Phase Transitions in Random Constraint Satisfaction Problems

Konstantinos Panagiotou
(with Amin Coja-Oghlan)

$k-S A T$

- Given:
$-n$ Boolean (true/false) variables $x_{1}, x_{2}, \ldots, x_{n}$
- a Boolean formula in k-conjunctive normal form (k-CNF)

$$
F=\Lambda_{i=1}^{m} C_{i}, \quad C_{i}=\bigvee_{j=1}^{k} l_{i, j}
$$

where $l_{i, j}$ is a variable or the negation of a variable

- An assignment

$$
\sigma:\left\{x_{1}, \ldots, x_{n}\right\} \rightarrow\{\text { true, false }\}
$$

is called satisfying (for F), if it satisfies all clauses

- A clause is satisfied (by σ) if at least one literal in it is satisfied

Example ($k=2,2-\mathrm{CNF}$)

$$
F=\left(x_{1} \vee x_{2}\right) \wedge\left(x_{2} \vee \overline{x_{3}}\right) \wedge\left(\overline{x_{1}} \vee x_{3}\right)
$$

- Assignment $\sigma_{1}=$ (true, true, true) is satisfying
- Assignment $\sigma_{2}=$ (false, false, true) is not

The k-SAT Problem

- Question: given F, compute a satisfying assignment or verify that there is none!
- This is a central problem in Computer Science
- If $k=1$, then it is easy:
$-F$ is satisfiable iff no variable appears both negated and not negated
- If $k=2$, then there is a linear time algorithm [Aspvall, Plass \& Tarjan (1979)]
- If $k \geq 3$, then the problem is $N P$-complete [Cook \& Levin (1971)]

General Setting: CSP

- Constraint Satisfaction Problems
- Given:
- Set of variables $X=\left\{x_{1}, \ldots, x_{n}\right\}$, finite domain D
- Set of constraints $C=\left\{c_{1}, \ldots, c_{m}\right\}$, where

$$
c_{i}=\left(X_{i}, F_{i}\right) \text { with } X_{i} \subset X, F_{i} \in X_{i} \rightarrow D
$$

- F_{i} is a forbidden assignment to the variables in X_{i}
- Question: given (X, C), is there any assignment $\phi: X \rightarrow D$ such that all c_{i} are satisfied, that is, $\left.\phi\right|_{X_{i}} \neq F_{i}, 1 \leq i \leq m$?

Other Examples

- $k-\mathrm{COL}$
- Given: a graph G
- Question: is it possible to color the vertices of G with k colors such that any two neighbors receive different colors?

- α-ISET, where $\alpha \in(0,1)$
- Given: a graph G
- Question: is there an independent set that contains at least an α fraction of the vertices?

Why are CSPs so hard?

Random Formulas

- Setup:
- n Boolean variables x_{1}, \ldots, x_{n}
$-m=\lfloor c n\rfloor, c>0$
$-F_{n, m}$ is a k-CNF with m clauses, where each clause is drawn uniformly at random from the set of all possible clauses
- We call c the density of the formula
- Initial motivation for studying random k-SAT: the "most difficult" instances seem to be around a specific $c=c_{k}$

A Generative Procedure

- Generate $F_{n, m}$ as follows:
- for $i=1 \ldots m \quad / /$ Generate C_{i} - i th clause
- for $j=1 \ldots k \quad / /$ Generate j th literal in C_{i}
- $l_{i, j}:=x_{I}$, where I is uar (uniformly at random) from $\{1, \ldots, n\}$
- With probability $1 / 2$ set $l_{i, j}:=\overline{l_{i, j}}$ (i.e. negate the occurrence of the variable)
- All random decisions are independent
- Particularly, the choice of each variable occurence and of its „sign" are distinct processes

Experimental Evaluation

- Anderson '86, '99, Cheesman et al '91

Running time of an algorithm

Many Questions...

- For which densities c (\# clauses $=m=c n$) is $F_{n, m}$ satisfiable whp (with high probability)?
- Other properties that hold whp?
- Algorithms?
- We will consider only the case $k \geq 3$ here.

Random CSPs

- Statistical physicists have developed sophisticated but non-rigorous techniques
- detailed picture about the structural properties
- several conjectures, algorithms
- many papers: Krzakala, Montanari, Parisi, RicciTersenghi, Semerjian, Zdeborova, Zecchina, ...
- Most parts of the picture: beyond current capabilities of mathematics

Picture - Satisfiability

$\operatorname{Pr}\left[F_{n, c n}\right.$ is satisfiable $]$ as $n \rightarrow \infty$

(density)

A First Bound

- Consider the obvious random variable

$$
X=\# \text { of satisfying assignments of } F_{n, c n}
$$

- If for the fixed value of c we can show

$$
\mathbb{E}[X] \rightarrow 0 \text { as } n \rightarrow \infty
$$

then $X=0$ and $F_{n, c n}$ is not satisfiable whp.

- Let $X=\sum_{\sigma} X_{\sigma}$, where the sum is over all possible assignments in $\{\text { true, false }\}^{n}$ and

$$
X_{\sigma}=\mathbf{1}\left[\sigma \text { satisfies } F_{n, c n}\right]
$$

A First Bound (cont.)

$$
\begin{aligned}
& \mathbb{E}[X]=\sum_{\sigma} \operatorname{Pr}\left[\sigma \text { satisfies } F_{n, c n}\right] \\
& =\sum_{\sigma} \operatorname{Pr}\left[\forall 1 \leq i \leq c n: \sigma \text { satisfies } C_{i}\right] \\
& =\sum_{\sigma} \prod_{1 \leq i \leq c n} \operatorname{Pr}\left[\sigma \text { satisfies } C_{i}\right] \\
& =\sum\left(1-2^{-k}\right)^{c n} \quad C_{i}=\cdots \vee \cdots \vee \cdots \vee \cdots \\
& C_{i}=x_{i_{1}} \vee \overline{x_{i_{2}}} \vee \overline{x_{i_{3}}} \vee x_{i_{4}} \\
& =2^{n}\left(1-2^{-k}\right)^{c n} \quad \ln \sigma: 0 \quad 1 \quad 10 \\
& \approx \exp \left(n\left(\ln 2-2^{-k} c\right)\right)
\end{aligned}
$$

Picture

$\operatorname{Pr}\left[F_{n, c n}\right.$ is satisfiable $]$ as $n \rightarrow \infty$

(Some) Previous Work

- Friedgut '05: There is a sharp threshold sequence $c_{k}(n)$:
- If $c<c_{k}(n)$, then $F_{n, c n}$ is satisfiable whp
- If $c>c_{k}(n)$, then it is not whp
- Kirousis et al. '98:

$$
c_{k}(n) \leq 2^{k} \ln 2-\frac{1}{2}(1+\ln 2)
$$

- Achlioptas and Peres '04:

$$
c_{k}(n) \geq 2^{k} \ln 2-k \ln 2
$$

Rigorous Bounds

$\operatorname{Pr}\left[F_{n, c n}\right.$ is satisfiable $]$ as $n \rightarrow \infty$

The Next Step

Coja-Oghlan, P. '13, '14, '16:

$$
c_{k}(n) \geq 2^{k} \ln 2-\frac{1+\ln 2}{2}-2^{-o(k)}
$$

THE Conjecture for k-SAT

$\operatorname{Pr}\left[F_{n, c n}\right.$ is satisfiable $]$ as $n \rightarrow \infty$

Satisfiability Conjecture for many CSPs

- There is a critical (problem specific) density c^{*} such that
- Random instance of CSP is satisfiable if $c<c^{*}$
- Is not if $c>c^{*}$
- Non-rigorous arguments even determine the value of c^{*} for several problems!

The Second Moment Problem

- If Z is a non-negative random variable

$$
\operatorname{Pr}[Z>0] \geq \frac{\mathbb{E}[Z]^{2}}{\mathbb{E}\left[Z^{2}\right]}
$$

Paley-Zygmund Inequality Second Moment Method

- We can apply this to X, the number of satisfying assignments of $F_{n, c n}$
- If $\mathbb{E}[X]^{2} \approx \mathbb{E}\left[X^{2}\right]$ for the given c, then we are done!

Bound for 2nd Moment

$$
\begin{aligned}
\mathbb{E}\left[X^{2}\right] & =\sum_{\sigma, \tau} \operatorname{Pr}\left[\sigma, \tau \text { satisfy } F_{n, c n}\right] \\
& =\cdots \\
& >\operatorname{E}[X]^{\wedge} 2
\end{aligned}
$$

Problem: for all $c>0$ we have that $\mathbb{E}\left[X^{2}\right]$ is exponentially larger than $\mathbb{E}[X]^{2}$!

Why?

An Asymmetry

- Consider a thought experiment
- Suppose that somebody makes the promise ${ }^{,} x_{1}$ appears in $F_{n, c n}$ exactly d_{1} times ...
... and all these appearances are positive"
- What value do we assign to x_{1} ?
- Other promise:
, x_{1} appears in $F_{n, c n}$ exactly d_{1} times ...
... and 51% of the appearances are positive"
- We (should) set again x_{1} to true

The Majority

- Our „best guess" for a satisfying assignment is the majority vote:
- Somebody tells us how often each variable appears positively and negatively, and nothing else
- If x_{i} appears more often positively, assign it to true, and otherwise to false
- This assignment maximizes the probability that $F_{n, c n}$ is satisfied
- Even more: assignments that are „close" to the majority vote have a larger probability of being satisfying

Picture of the Situation

- Majority assignment
- Largest probability of being satisfiable
- Distance 1
- Less probability of being satisfiable
- Distance 2
- Even smaller probability of being satisfiable
\rightarrow The satisfying assignments correlate!

Getting a Grip on the Majority

- Generate $F_{n, m}^{\prime}$ in two steps as follows:

1. For each variable x_{i} choose randomly the number d_{i} of positive occurences and the number $\overline{d_{i}}$ of negative occurences.
2. Choose randomly a formula where each variable x_{i} appears d_{i} times positively and $\overline{d_{i}}$ times negatively.

- Want: distributions of $F_{n, m}^{\prime}, F_{n, m}$ are the same.
- Step 1
- It is easy to see in $F_{n, m}$ that d_{i} and $\overline{d_{i}}$ are distributed like $\mathrm{Po}(k c / 2)$, and they are almost independent

Step 2

- How do we choose a formula where each variable x_{i} appears d_{i} times positively and $\overline{d_{i}}$ times negatively?
- Configuration model:

Recall the Situation

- Majority assignment
- Largest probability of being satisfiable
- Distance 1
- Less probability of being satisfiable
- Distance 2
- Even smaller probability of being satisfiable

Getting a Grip on the Majority

- Consider only specific satisfying assignments!
- Intuition: if a variable appears d times positively and \bar{d} times negatively, then assign it to true with some probability that depends on d, \bar{d} only.
- Map $p: \mathbb{Z} \rightarrow[0,1]$
- Set also $p\left(x_{i}\right)=p\left(d_{i}-\bar{d}_{i}\right), p\left(\overline{x_{i}}\right)=1-p\left(x_{i}\right)$
- Meaning: a p-fraction of the literals is satisfied under the assignments that we consider.

More formally

- Set $T=\left\{\left(p\left(x_{i}\right), 1-p\left(x_{i}\right)\right): 1 \leq i \leq n\right\}$
- This is the set of different „types" of variable occurences (equivalent $\rightarrow d_{i}-\bar{d}_{i}=$ const)
- We say that $\sigma:\left\{x_{1}, \ldots, x_{n}\right\} \rightarrow\{$ true, false $\}$ has p marginals if for all $(t, 1-t) \in T$

$$
\sum_{i: p\left(x_{i}\right)=t} d_{i} 1\left[\sigma\left(x_{i}\right)=\text { true }\right]=t \sum_{i: p\left(x_{i}\right)=t} d_{i}
$$

- That is, a t-fraction of the variable occurences is set to true, for all $t \in T$
- Question: how do we choose p ?

Pictorially

Detour: Physics

- For x_{i} let $\mu\left(x_{i}, F\right)$ be the fraction of satisfying assignments in which x_{i} is set to true in F
- It is NP-hard to compute $\mu\left(x_{i}, F\right)$
- According to physicists: $\mu\left(x_{i}, F_{n, m}\right)$ can be computed by a message passing algorithm called Belief Propagation [Montanari et al ${ }^{\text {077] }}$

Conjecture

$$
\mu\left(x_{i}, F_{n, c n}\right)=\frac{1}{2}+\frac{d_{i}-\bar{d}_{i}}{2^{k+1}}+O\left(\frac{\left(d_{i}-\bar{d}_{i}\right)^{2}}{2^{2 k}}\right)
$$

- Belief Propagation leads to a stronger prediction
- Conjecture for μ up to an error of $o(1)$ as $n \rightarrow \infty$
- it does depend on many parameters

Our Choice

$$
p(z)=\left\{\begin{array}{c}
\frac{1}{2}+\frac{z}{2^{k+1}}, \text { if }|z|<10 \sqrt{k 2^{k} \ln k} \\
\frac{1}{2}, \text { otherwise }
\end{array}\right.
$$

- This matches the conjecture on the „bulk" of the variables
- Recall that $d_{i}, \bar{d}_{i} \sim \operatorname{Po}\left(\frac{k c}{2}\right) \approx \operatorname{Po}\left(k 2^{k+1}\right)$
- Except of a very small fraction, all other variables have the property

$$
\left|d_{i}-\bar{d}_{i}\right|=O\left(\sqrt{k 2^{k}}\right)
$$

This yields...

Coja-Oghlan, P. '13, '14, '16:

$$
c_{k}(n) \geq 2^{k} \ln 2-\frac{1+\ln 2}{2}-2^{-o(k)}
$$

Better?

- Yes!
- Not so long ago on arxiv by Ding, Sly, Sun: satisfiability conjecture is true for k-SAT, for k sufficiently large.
- Approach:
- Work with the correct value for $\mu\left(x_{i}, F\right)$
- This depends not only the appearances of x_{i}, but on the local neighborhood in F
- Infinitely many parameters

Summary \& Outlook

- The quest for the k-SAT threshold has (almost) ended
- This is only the tip of the iceberg
- What can we say about other CSPs?
- Algorithms for random instances?
- Rigorous translation of replica method?

Thank you!

