Phase Transitions in Random Constraint Satisfaction Problems

Konstantinos Panagiotou (with Amin Coja-Oghlan)

k-SAT

- Given:
 - *n* Boolean (true/false) variables $x_1, x_2, ..., x_n$
 - a Boolean formula in k-conjunctive normal form (k-CNF)

$$F = \bigwedge_{i=1}^{m} C_i, \qquad C_i = \bigvee_{j=1}^{k} l_{i,j}$$

where $l_{i,j}$ is a variable or the negation of a variable

• An assignment

 $\sigma: \{x_1, \dots, x_n\} \to \{\text{true}, \text{false}\}$

is called *satisfying* (for F), if it satisfies all clauses

- A clause is satisfied (by σ) if at least one literal in it is satisfied

Example (k = 2, 2-CNF)

$$F = (x_1 \lor x_2) \land (x_2 \lor \overline{x_3}) \land (\overline{x_1} \lor x_3)$$

- Assignment $\sigma_1 = (true, true, true)$ is satisfying
- Assignment $\sigma_2 = (false, false, true)$ is not

The *k*-SAT Problem

- Question: given *F*, compute a satisfying assignment or verify that there is none!
- This is a central problem in Computer Science
- If k = 1, then it is easy:
 - F is satisfiable iff no variable appears both negated and not negated
- If k = 2, then there is a linear time algorithm [Aspvall, Plass & Tarjan (1979)]
- If $k \ge 3$, then the problem is *NP*-complete [Cook & Levin (1971)]

General Setting: CSP

- Constraint Satisfaction Problems
- Given:
 - Set of variables $X = \{x_1, \dots, x_n\}$, finite domain D
 - Set of *constraints* $C = \{c_1, \dots, c_m\}$, where

 $c_i = (X_i, F_i)$ with $X_i \subset X, F_i \in X_i \rightarrow D$

- F_i is a *forbidden assignment* to the variables in X_i
- Question: given (X, C), is there any assignment $\phi: X \to D$ such that all c_i are *satisfied*, that is, $\phi|_{X_i} \neq F_i, 1 \leq i \leq m$?

Other Examples

- *k*-COL
- Given: a graph G
- Question: is it possible to color the vertices of G with k colors such that any two neighbors receive different colors?

- Given: a graph G
- Question: is there an *independent* set that contains at least an αfraction of the vertices?

Why are CSPs so hard?

Random Formulas

- Setup:
 - -n Boolean variables x_1, \ldots, x_n
 - $-m = \lfloor cn \rfloor, c > 0$
 - $F_{n,m}$ is a k-CNF with m clauses, where each clause is drawn uniformly at random from the set of all possible clauses
- We call *c* the *density* of the formula
- Initial motivation for studying random k-SAT: the "most difficult" instances seem to be around a specific $c = c_k$

A Generative Procedure

• Generate $F_{n,m}$ as follows:

- for $i = 1 \dots m$ // Generate C_i - *i*th clause

- for $j = 1 \dots k$ // Generate jth literal in C_i
 - $l_{i,j} \coloneqq x_I$, where I is uar (uniformly at random) from $\{1, ..., n\}$
 - With probability $\frac{1}{2}$ set $l_{i,j} \coloneqq \overline{l_{i,j}}$ (i.e. negate the occurrence of the variable)
- All random decisions are *independent*
 - Particularly, the choice of each variable occurence and of its "sign" are distinct processes

Experimental Evaluation

• Anderson '86, '99, Cheesman et al '91

Many Questions...

- For which densities c (# clauses = m = cn) is $F_{n,m}$ satisfiable whp (with high probability)?
- Other properties that hold whp?
- Algorithms?

• We will consider only the case $k \ge 3$ here.

Random CSPs

- Statistical physicists have developed sophisticated but non-rigorous techniques
 - detailed picture about the structural properties
 - several conjectures, algorithms
 - many papers: Krzakala, Montanari, Parisi, Ricci-Tersenghi, Semerjian, Zdeborova, Zecchina, ...
- Most parts of the picture: beyond current capabilities of mathematics

A First Bound

• Consider the obvious random variable

X = # of satisfying assignments of $F_{n,cn}$

• If for the fixed value of c we can show $\mathbb{E}[X] \to 0$ as $n \to \infty$,

then X = 0 and $F_{n,cn}$ is not satisfiable whp.

• Let $X = \sum_{\sigma} X_{\sigma}$, where the sum is over all possible assignments in $\{\text{true, false}\}^n$ and

$$X_{\sigma} = \mathbf{1}[\sigma \text{ satisfies } F_{n,cn}]$$

A First Bound (cont.)

$$\mathbb{E}[X] = \sum_{\sigma} \Pr[\sigma \text{ satisfies } F_{n,cn}]$$

$$= \sum_{\sigma} \Pr[\forall 1 \le i \le cn: \sigma \text{ satisfies } C_i]$$

$$= \sum_{\sigma} \prod_{1 \le i \le cn} \Pr[\sigma \text{ satisfies } C_i]$$

$$= \sum_{\sigma} (1 - 2^{-k})^{cn} \qquad C_i = \cdots \lor \cdots \lor \cdots \lor \cdots$$

$$= 2^n (1 - 2^{-k})^{cn} \qquad \ln \sigma: 0 \qquad 1 \qquad 1 \qquad 0$$

$$\approx \exp(n(\ln 2 - 2^{-k}c))$$

Picture

(Some) Previous Work

- Friedgut '05: There is a sharp threshold sequence $c_k(n)$:
 - If $c < c_k(n)$, then $F_{n,cn}$ is satisfiable whp - If $c > c_k(n)$, then it is not whp
- Kirousis et al. '98:

$$c_k(n) \le 2^k \ln 2 - \frac{1}{2}(1 + \ln 2)$$

• Achlioptas and Peres '04: $c_k(n) \ge 2^k \ln 2 - k \ln 2$

Rigorous Bounds

The Next Step

THE Conjecture for *k*-SAT

Satisfiability Conjecture for many CSPs

- There is a critical (problem specific) density c^* such that
 - Random instance of CSP is satisfiable if $c < c^*$

– Is not if $c > c^*$

 Non-rigorous arguments even determine the value of c* for several problems!

The Second Moment Problem

If Z is a non-negative random variable

 $\Pr[Z > 0] \ge \frac{\mathbb{E}[Z]^2}{\mathbb{E}[Z^2]}$

Paley-Zygmund Inequality Second Moment Method

- We can apply this to *X*, the number of satisfying assignments of *F*_{*n*,*cn*}
- If E[X]² ≈ E[X²] for the given *c*, then we are done!

Bound for 2nd Moment $\mathbb{E}[X^2] = \sum_{\sigma,\tau} \Pr[\sigma,\tau \text{ satisfy } F_{n,cn}]$ $= \cdots$ $\gg \mathbb{E}[X]^2$

Problem: for all c > 0 we have that $\mathbb{E}[X^2]$ is *exponentially* larger than $\mathbb{E}[X]^2$!

Why?

An Asymmetry

- Consider a thought experiment
- Suppose that somebody makes the promise "x₁ appears in F_{n,cn} exactly d₁ times …
 ... and all these appearances are positive"
- What value do we assign to x_1 ?
- Other promise:

", x_1 appears in $F_{n,cn}$ exactly d_1 times and 51% of the appearances are *positive*"

• We (should) set again x_1 to true

The Majority

- Our "best guess" for a satisfying assignment is the majority vote:
 - Somebody tells us how often each variable appears positively and negatively, and nothing else
 - If x_i appears more often positively, assign it to true, and otherwise to false
- This assignment *maximizes* the probability that $F_{n,cn}$ is satisfied
- Even more: assignments that are "close" to the majority vote have a larger probability of being satisfying

Picture of the Situation

- Majority assignment
- Largest probability of being satisfiable
- Distance 1
- Less probability of being satisfiable
- Distance 2
- Even smaller probability of being satisfiable

 \rightarrow The satisfying assignments *correlate*!

Getting a Grip on the Majority

- Generate $F'_{n,m}$ in *two steps* as follows:
 - 1. For *each variable* x_i choose randomly the number d_i of *positive* occurrences and the number $\overline{d_i}$ of *negative* occurrences.
 - 2. Choose randomly a *formula* where each variable x_i appears d_i times positively and $\overline{d_i}$ times negatively.
 - Want: distributions of $F'_{n,m}$, $F_{n,m}$ are the same.
 - Step 1
 - It is easy to see in $F_{n,m}$ that d_i and $\overline{d_i}$ are distributed like Po(kc/2), and they are almost independent

Step 2

- How do we choose a formula where each variable x_i appears d_i times positively and $\overline{d_i}$ times negatively?
- Configuration model:

Recall the Situation

- Majority assignment
- Largest probability of being satisfiable
- Distance 1
- Less probability of being satisfiable
- Distance 2
- Even smaller probability of being satisfiable

Getting a Grip on the Majority

- Consider only *specific* satisfying assignments!
- Intuition: if a variable appears d times positively and \overline{d} times negatively, then assign it to true with some probability that depends on d, \overline{d} only.
- Map $p: \mathbb{Z} \rightarrow [0,1]$
- Set also $p(x_i) = p(d_i \overline{d_i}), p(\overline{x_i}) = 1 p(x_i)$
- Meaning: a *p*-fraction of the literals is satisfied under the assignments that we consider.

More formally

- Set $T = \{(p(x_i), 1 p(x_i)): 1 \le i \le n\}$
- This is the set of different "types" of variable occurences (equivalent $\rightarrow d_i \overline{d_i} = const$)
- We say that $\sigma: \{x_1, \dots, x_n\} \rightarrow \{\text{true, false}\}\ \text{has } p$ -*marginals* if for all $(t, 1 t) \in T$

$$\sum_{i:p(x_i)=t} d_i \mathbb{1}[\sigma(x_i) = \text{true}] = t \sum_{i:p(x_i)=t} d_i$$

- That is, a *t*-fraction of the variable occurences is set to true, for all $t \in T$
- Question: how do we choose *p*?

i

Detour: Physics

- For x_i let $\mu(x_i, F)$ be the fraction of satisfying assignments in which x_i is set to true in F
- It is *NP*-hard to compute $\mu(x_i, F)$
- According to physicists: $\mu(x_i, F_{n,m})$ can be computed by a message passing algorithm called Belief Propagation [Montanari et al '07]

Conjecture

$$\mu(x_i, F_{n,cn}) = \frac{1}{2} + \frac{d_i - \overline{d_i}}{2^{k+1}} + O\left(\frac{(d_i - \overline{d_i})^2}{2^{2k}}\right)$$

- Belief Propagation leads to a stronger prediction
 - Conjecture for μ up to an error of o(1) as $n \to \infty$
 - it does depend on many parameters

$$Dur Choice$$

$$p(z) = \begin{cases} \frac{1}{2} + \frac{z}{2^{k+1}}, & \text{if } |z| < 10\sqrt{k2^k \ln k} \\ \frac{1}{2}, & \text{otherwise} \end{cases}$$

- This matches the conjecture on the "bulk" of the variables
 - Recall that d_i , $\overline{d_i} \sim \operatorname{Po}\left(\frac{kc}{2}\right) \approx \operatorname{Po}(k2^{k+1})$
 - Except of a very small fraction, all other variables have the property

$$\left|d_{i} - \overline{d}_{i}\right| = O(\sqrt{k2^{k}})$$

This yields...

Better?

- Yes!
- Not so long ago on arxiv by Ding, Sly, Sun: satisfiability conjecture is true for k-SAT, for k sufficiently large.
- Approach:
 - Work with the *correct value* for $\mu(x_i, F)$
 - This depends not only the appearances of x_i , but on the local neighborhood in F
 - Infinitely many parameters

Summary & Outlook

- The quest for the k-SAT threshold has (almost) ended
- This is only the tip of the iceberg
 - What can we say about other CSPs?
 - Algorithms for random instances?
- Rigorous translation of replica method?

Thank you!

