Convergence of MCMC and Loopy BP in the Tree Uniqueness Region for the Hard-Core Model

Charis Efthymiou
University of Frankfurt

joint work with:
T. Hayes, D. Štefankovič, E. Vigoda, Y. Yin

5th ATHENS Probability Colloquium
University of Athens - Athens, May 2017
Hard-Core Model

\[G = (V, E), \ \text{fugacity} \ \lambda > 0, \ \text{for each independent set} \ \sigma \] we have

\[\mu(\sigma) = \lambda |\sigma| / Z \]

where

\[Z = \sum_{\sigma} \lambda |\sigma| \]

\[Z(G, \lambda) \] is the partition function.
Hard-Core Model

$G = (V, E)$, fugacity $\lambda > 0$, for each independent set σ we have

$$\mu(\sigma) = \frac{\lambda^{|\sigma|}}{Z}$$
Hard-Core Model

$G = (V, E)$, fugacity $\lambda > 0$, for each independent set σ we have

$$\mu(\sigma) = \lambda^{|\sigma|} / Z$$

where

$$Z = \sum_{\sigma} \lambda^{|\sigma|}$$
Hard-Core Model

\[G = (V, E), \ \text{fugacity } \lambda > 0, \ \text{for each independent set } \sigma \ \text{we have} \]

\[\mu(\sigma) = \frac{\lambda^{||\sigma||}}{Z} \]

where

\[Z = \sum_{\sigma} \lambda^{||\sigma||} \]

\[Z = Z(G, \lambda) \] is the partition function.
The problem

For $G = (V, E)$ and fugacity $\lambda > 0$, compute the partition function

$$Z(G, \lambda) = \sum_{\sigma} \lambda|\sigma|$$
The problem

For $G = (V, E)$ and fugacity $\lambda > 0$, compute the partition function

$$Z(G, \lambda) = \sum_{\sigma} \lambda^{\mid \sigma \mid}$$

- computationally \textit{hard problem} [Valiant 1979]
The problem

For $G = (V, E)$ and fugacity $\lambda > 0$, compute the partition function

$$Z(G, \lambda) = \sum_{\sigma} \lambda^{\left|\sigma\right|}$$

• computationally hard problem [Valiant 1979]
• focus on the approximation algorithms
Counting Vs Gibbs Marginals
Counting Vs Gibbs Marginals

Compute $Z(G, \lambda)$
Counting Vs Gibbs Marginals

Compute $Z(G, \lambda)$

for σ distributed as in μ compute

$$\Pr[\sigma = \emptyset] = \frac{1}{Z(G, \lambda)}$$
Counting Vs Gibbs Marginals

Compute $Z(G, \lambda)$
for σ distributed as in μ compute

$$\Pr[\sigma = \emptyset] = \frac{1}{Z(G, \lambda)}$$

$$\Pr[\sigma = \emptyset] = \Pr \left[\bigcap_i \sigma(u_i) = \text{unoccupied} \right]$$
Counting Vs Gibbs Marginals

Compute $Z(G, \lambda)$

for σ distributed as in μ compute

$$\Pr[\sigma = \emptyset] = \frac{1}{Z(G, \lambda)}$$

$$\Pr[\sigma = \emptyset] = \prod_i \Pr \left[\sigma(u_i) = \text{unoccupied} \mid \bigcap_{j < i} \sigma(u_j) = \text{unoccupied} \right]$$
Belief Propagation - An exact algorithm for trees
Belief Propagation - An exact algorithm for trees

For T and λ

\[
q(v, w) = \mu(v \text{ occupied} | w \text{ unoccupied})
\]

\[
R_{v \rightarrow w} = q(w(v))
\]

\[
R_{v \rightarrow p(v)} = \lambda \prod_{w \in N(v)} \{p(v)\}
\]

For every $i \geq 1$

\[
R_{i v \rightarrow p(v)} = \lambda \prod_{w \in N(v)} \{p(v)\}
\]
Belief Propagation - An exact algorithm for trees

For T and λ

For every $i \geq 1$

$$R_i v \rightarrow p(v) = \lambda \prod_{w \in N(v)} \{ p(v) \} \frac{1}{1 + R_{i-1} w \rightarrow v}$$
Belief Propagation - An exact algorithm for trees

For T and λ

$$q(v, w) = \mu(v \text{ occupied}|w \text{ unoccupied})$$
Belief Propagation - An exact algorithm for trees

For \(T \) and \(\lambda \)

\[
q(v, w) = \mu(v \text{ occupied}|w \text{ unoccupied})
\]

\[
R_{v \rightarrow w} = \frac{q(v, w)}{1 - q(v, w)}
\]
Belief Propagation - An exact algorithm for trees

For T and λ

$q(v, w) = \mu(v \text{ occupied}|w \text{ unoccupied})$

$$R_{v\rightarrow w} = \frac{q(v, w)}{1 - q(v, w)}$$
Belief Propagation - An exact algorithm for trees

For T and λ

$q(v, w) = \mu(v \text{ occupied} | w \text{ unoccupied})$

$$R_{v \rightarrow w} = \frac{q(v, w)}{1 - q(v, w)}$$

$$R_{v \rightarrow w} = \lambda \prod_{z \in N(v) \setminus \{w\}} \frac{1}{1 + R_{z \rightarrow v}}$$
Belief Propagation - An exact algorithm for trees

For T and λ

$$q(v, w) = \mu(v \text{ occupied} | w \text{ unoccupied})$$

$$R_{v \rightarrow w} = \frac{q(v, w)}{1 - q(v, w)}$$

$$R_{v \rightarrow w} = \lambda \prod_{z \in N(v) \setminus \{w\}} \frac{1}{1 + R_{z \rightarrow v}}$$
Belief Propagation - An exact algorithm for trees

For T and λ

\[
q(v, w) = \mu(v \text{ occupied}|w \text{ unoccupied})
\]

\[
R_{v \rightarrow w} = \frac{q(v, w)}{1 - q(v, w)}
\]

\[
R_v = \lambda \prod_{z \in N(v)\setminus\{w\}} \frac{1}{1 + R_{z \rightarrow v}}
\]

Start from arbitrary $R^0_{v \rightarrow w} s$, iterate like

\[
R^i_{v \rightarrow w} = \lambda \prod_{z \in N(v)\setminus\{w\}} \frac{1}{1 + R^{i-1}_{z \rightarrow v}}
\]
BP and Gibbs distribution on trees
BP and Gibbs distribution on trees

Convergence on trees

There exists i_0 such that for every $i \geq i_0$ and every $(R^0_{v \rightarrow w})_{\{v,w\} \in E}$ we have

$$R^i_{v \rightarrow w} = R^*_{v \rightarrow w}$$

In turn

$$\mu(v \text{ occupied}| w \text{ unoccupied}) = q^* = \frac{R^*_{v \rightarrow w}}{1 + R^*_{v \rightarrow w}}$$
BP and Gibbs distribution on trees

Convergence on trees

There exists i_0 such that for every $i \geq i_0$ and every $(R_{v \rightarrow w})_{\{v,w\} \in E}$ we have

$$R^i_{v \rightarrow w} = R^*_{v \rightarrow w}$$

In turn

$$\mu(v \text{ occupied}|w \text{ unoccupied}) = q^* = \frac{R^*_{v \rightarrow w}}{1 + R^*_{v \rightarrow w}}$$

BP is an elaborate version of Dynamic Programing
Algorithmic Approaches
Algorithmic Approaches

Compute *estimates of Gibbs marginals*
Algorithmic Approaches

Compute *estimates of Gibbs marginals*

- Deterministic
Algorithmic Approaches

Compute estimates of Gibbs marginals

- Deterministic

- Randomized
Algorithmic Approaches

Compute *estimates of Gibbs marginals*

- Deterministic
 - *Numerical* estimations of Gibbs marginals

- Randomized
Algorithmic Approaches

Compute *estimates of Gibbs marginals*

- Deterministic
 - *Numerical* estimations of Gibbs marginals

- Randomized
 - Estimation by using *samples (approximately) Gibbs distributed*
Algorithmic Approaches

Compute estimates of Gibbs marginals

- Deterministic
 - Numerical estimations of Gibbs marginals
 - Fully Polynomial Time Approximation Scheme (FPTAS)

- Randomized
 - Estimation by using samples \((approximately)\) Gibbs distributed
 - Fully Polynomial Time Randomized Approximation Scheme (FPRAS)
Algorithmic Approaches

Compute *estimates of Gibbs marginals*

- **Deterministic**
 - *Numerical* estimations of Gibbs marginals
 - Fully Polynomial Time Approximation Scheme (FPTAS)
 - in time $\text{poly}(n, \epsilon^{-1})$
 \[\hat{Z} \in (1 \pm \epsilon)Z(G, \lambda) \]

- **Randomized**
 - Estimation by using *samples (approximately) Gibbs distributed*
 - Fully Polynomial Time Randomized Approximation Scheme (FPRAS)
 - in time $\text{poly}(n, \epsilon^{-1}, \log(\delta^{-1}))$
 \[\Pr[\hat{Z} \in (1 \pm \epsilon)Z(G, \lambda)] \geq 1 - \delta \]
For which λ can we approximate?
For which λ can we approximate?

Intuition

... the larger λ the harder is to approximate $Z(G, \lambda)$
For which λ can we approximate?

Hardness of approximation [Sly 2010]

For triangle-free Δ-regular graphs, where $\Delta \geq 3$, and for all $\lambda > \lambda_c(\Delta)$, it is NP-hard to approximate the partition function within factor $e^{\Theta(n)}$.
For which λ can we approximate?

Hardness of approximation [Sly 2010]

For triangle-free Δ-regular graphs, where $\Delta \geq 3$, and for all $\lambda > \lambda_c(\Delta)$, it is NP-hard to approximate the partition function within factor $e^{\Theta(n)}$.

- Galanis, Ge, Stefankovic, Vigoda, Yang (2011)
- Sly, Sun (2012)
- Galanis, Stefankovic, Vigoda (2012)
For which λ can we approximate?

Hardness of approximation [Sly 2010]

For triangle-free Δ-regular graphs, where $\Delta \geq 3$, and for all $\lambda > \lambda_c(\Delta)$, it is NP-hard to approximate the partition function within factor $e^{\Theta(n)}$.

What is $\lambda_c(\Delta)$? [Kelly 1985]

Critical point for “uniqueness/non-uniqueness” transition of the hard-core model on Δ regular trees

$$
\lambda_c(\Delta) := \frac{(\Delta - 1)^{\Delta - 1}}{(\Delta - 2)^\Delta} \sim \frac{e}{\Delta}
$$
Tree Uniqueness
For Δ-regular tree of height ℓ:

Let $p_\ell = \mu$ (root is occupied)

Extremal cases: even versus odd height.
Tree Uniqueness

For Δ-regular tree of height \(\ell \):

Let \(p_\ell = \mu \) (root is occupied)

Extremal cases: even versus odd height.

Does \(\lim_{\ell \to \infty} p_{2\ell} = \lim_{\ell \to \infty} p_{2\ell+1} \)?
For Δ-regular tree of height ℓ:

Let $p_\ell = \mu$ (root is occupied)

Extremal cases: even versus odd height. Does $\lim_{\ell \to \infty} p_{2\ell} = \lim_{\ell \to \infty} p_{2\ell+1}$?

$\lambda \leq \lambda_c(\Delta)$: No boundary effects root.
$\lambda > \lambda_c(\Delta)$: Exist boundaries effect root.
Deterministic Algorithms

Weitz's approach [Weitz 2006]

- Given G of maximum degree Δ and $\lambda < \lambda_c(\Delta)$,
 - uses tree of self avoiding walks, to organize the computations
 - reduces to dynamic programming.
 - the size of the computation depends on the size of the tree
 - in the worst case the tree is exponentially large
 - "prune" the tree and still be accurate
 - this step requires $\lambda < \lambda_c$
Weitz’s approach [Weitz 2006]

Given G of maximum degree Δ and $\lambda < \lambda_c(\Delta)$,
Deterministic Algorithms

Weitz’s approach [Weitz 2006]

Given G of maximum degree Δ and $\lambda < \lambda_c(\Delta)$,

- uses tree of self avoiding walks, to organize the computations
Deterministic Algorithms

Weitz’s approach [Weitz 2006]

Given G of maximum degree Δ and $\lambda < \lambda_c(\Delta)$,

- uses tree of self avoiding walks, to organize the computations
 - reduces to dynamic programming.
Deterministic Algorithms

Weitz’s approach [Weitz 2006]

Given G of maximum degree Δ and $\lambda < \lambda_c(\Delta)$,

- uses tree of self avoiding walks, to organize the computations
 - reduces to dynamic programming.
- the size of the computation depends on the size of the tree
Deterministic Algorithms

Weitz’s approach [Weitz 2006]

Given G of maximum degree Δ and $\lambda < \lambda_c(\Delta)$,

- uses tree of self avoiding walks, to organize the computations
 - reduces to dynamic programming.
- the size of the computation depends on the size of the tree
 - in the worst case the tree is exponentially large
Weitz’s approach [Weitz 2006]

Given G of maximum degree Δ and $\lambda < \lambda_c(\Delta)$,
- uses tree of self avoiding walks, to organize the computations
 - reduces to dynamic programming.
- the size of the computation depends on the size of the tree
 - in the worst case the tree is exponentially large
- “prune” the tree and still be accurate
Deterministic Algorithms

Weitz’s approach [Weitz 2006]

Given G of maximum degree Δ and $\lambda < \lambda_c(\Delta)$,

- uses tree of self avoiding walks, to organize the computations
 - reduces to dynamic programming.
- the size of the computation depends on the size of the tree
 - in the worst case the tree is exponentially large
- “prune” the tree and still be accurate
 - this step requires $\lambda < \lambda_c$
Approximation guarantees
For all $\delta > 0$, there exists constant $C = C(\delta) > 0$, for all Δ all G of maximum degree Δ, all $\lambda < (1 - \delta)\lambda_c(\Delta)$ all $\epsilon > 0$ Weitz’s algorithm returns an estimation \hat{Z} of the partition function $Z(G, \lambda)$ such that

$$(1 - \epsilon)Z(G, \lambda) \leq \hat{Z} \leq (1 + \epsilon)Z(G, \lambda)$$

in time $O((n/\epsilon)^{C \log \Delta})$.

Performance Weitz’s algorithm

Approximation guarantees
For all $\delta > 0$, there exists constant $C = C(\delta) > 0$, for all Δ all G of maximum degree Δ, all $\lambda < (1 - \delta)\lambda_c(\Delta)$ all $\epsilon > 0$ Weitz’s algorithm returns an estimation \hat{Z} of the partition function $Z(G, \lambda)$ such that

$$(1 - \epsilon)Z(G, \lambda) \leq \hat{Z} \leq (1 + \epsilon)Z(G, \lambda)$$

in time $O((n/\epsilon)^{C \log \Delta})$.

- Li, Lu, and Yin (2012), (2013)
- Sinclair, Srivastava and Yin (2013)
Randomized Algorithm

Given G and $\lambda > 0$,
- set up an ergodic Markov Chain over the independent sets
- the equilibrium distribution is the hard-core model with fugacity λ
- the algorithm simulates the Markov chain
- outputs the configuration of the chain after "sufficiently many" steps
 the output should be close to the equilibrium distribution
 it is desirable that the chain mixes "fast"
Randomized Algorithm

Markov Chain Monte Carlo

Given G and $\lambda > 0$,
• set up an ergodic Markov Chain over the independent sets
• the equilibrium distribution is the hard-core model with fugacity λ
• the algorithm simulates the Markov chain
• outputs the configuration of the chain after “sufficiently many” steps
• the output should be close to the equilibrium distribution
• it is desirable that the chain mixes “fast”
Randomized Algorithm

Markov Chain Monte Carlo
Given G and $\lambda > 0$, ...
Randomized Algorithm

Markov Chain Monte Carlo
Given G and $\lambda > 0$,
- set up an ergodic Markov Chain over the independent sets
Randomized Algorithm

Markov Chain Monte Carlo

Given G and $\lambda > 0$,

- set up an **ergodic** Markov Chain over the independent sets
- the equilibrium distribution is the hard-core model with fugacity λ
Randomized Algorithm

Markov Chain Monte Carlo
Given G and $\lambda > 0$,

- set up an **ergodic** Markov Chain over the independent sets
- the **equilibrium distribution** is the hard-core model with fugacity λ
- the algorithm simulates the Markov chain
Randomized Algorithm

Markov Chain Monte Carlo
Given G and $\lambda > 0$,

- set up an ergodic Markov Chain over the independent sets
- the equilibrium distribution is the hard-core model with fugacity λ
- the algorithm simulates the Markov chain
- outputs the configuration of the chain after “sufficiently many” steps

It is desirable that the chain mixes “fast”
Markov Chain Monte Carlo

Given G and $\lambda > 0$,

- set up an ergodic Markov Chain over the independent sets
- the equilibrium distribution is the hard-core model with fugacity λ
- the algorithm simulates the Markov chain
- outputs the configuration of the chain after “sufficiently many” steps

the output should be close to the equilibrium distribution
Randomized Algorithm

Markov Chain Monte Carlo
Given G and $\lambda > 0$,

- set up an **ergodic** Markov Chain over the independent sets
- the **equilibrium distribution** is the hard-core model with fugacity λ
- the algorithm simulates the Markov chain
- outputs the configuration of the chain after "sufficiently many" steps

the output should be close to the equilibrium distribution
it is desirable that the chain mixes "fast"
Glauber dynamics (X_t)

1. Choose v uniformly at random from V.

 $$X' = \begin{cases}
 X_t \cup \{v\} & \text{with probability } \frac{\lambda}{1 + \lambda} \\
 X_t \setminus \{v\} & \text{with probability } \frac{1}{1 + \lambda}
 \end{cases}$$

2. If X' is an independent set, then $X_{t+1} = X'$; otherwise, $X_{t+1} = X_t$.

The chain converges to the hard-core model with fugacity λ.
Glauber dynamics \((X_t) \)

\(X_t \rightarrow X_{t+1} \) is defined as follows:

1. Choose \(v \) uniformly at random from \(V \).
 - \(X'_t = X_t \cup \{v\} \) with probability \(\lambda / (1 + \lambda) \).
 - \(X'_t = \{v\} \) with probability \(1 / (1 + \lambda) \).
2. If \(X'_t \) is independent set, then \(X_{t+1} = X'_t \), otherwise \(X_{t+1} = X_t \).

The chain converges to the hard-core model with fugacity \(\lambda \).
Glauber dynamics \((X_t)\)

\[X_t \rightarrow X_{t+1} \] is defined as follows:

1. Choose \(v\) uniformly at random from \(V\).
Glauber dynamics \((X_t)\)

\(X_t \rightarrow X_{t+1}\) is defined as follows:

1. Choose \(v\) uniformly at random from \(V\).

\[
X' = \begin{cases}
X_t \cup \{v\} & \text{with probability } \frac{\lambda}{1 + \lambda} \\
X_t \setminus \{v\} & \text{with probability } \frac{1}{1 + \lambda}
\end{cases}
\]
Glauber dynamics \((X_t)\)

\(X_t \rightarrow X_{t+1}\) is defined as follows:

1. Choose \(v\) uniformly at random from \(V\).

\[
X' = \begin{cases}
X_t \cup \{v\} & \text{with probability } \frac{\lambda}{1 + \lambda} \\
X_t \setminus \{v\} & \text{with probability } \frac{1}{1 + \lambda}
\end{cases}
\]

2. If \(X'\) is independent set, then \(X_{t+1} = X'\), otherwise \(X_{t+1} = X_t\)

The chain converges to the hard-core model with fugacity \(\lambda\).
Glauber dynamics \((X_t)\)

\(X_t \rightarrow X_{t+1}\) is defined as follows:

1. Choose \(v\) uniformly at random from \(V\).

\[X' = \begin{cases}
X_t \cup \{v\} & \text{with probability } \frac{\lambda}{1 + \lambda} \\
X_t \setminus \{v\} & \text{with probability } \frac{1}{1 + \lambda}
\end{cases}\]

2. If \(X'\) is independent set, then \(X_{t+1} = X'\), otherwise \(X_{t+1} = X_t\)

The chain converges to the hard-core model with fugacity \(\lambda\).
Our Results

Theorem

For all $\delta > 0$, there exists $\Delta_0 = \Delta_0(\delta)$ for all graphs $G = (V, E)$ of maximum degree $\Delta \geq \Delta_0$ and girth ≥ 7, all $\lambda < (1 - \delta)\lambda^c(\Delta)$, the mixing time of the Glauber dynamics satisfies $T_{\text{mix}} = O(n \log(n))$.
Our Results

Theorem

For all $\delta > 0$, there exists $\Delta_0 = \Delta_0(\delta)$ for all graphs $G = (V, E)$ of maximum degree $\Delta \geq \Delta_0$ and girth ≥ 7, all $\lambda < (1 - \delta)\lambda_c(\Delta)$, the mixing time of the Glauber dynamics satisfies

$$T_{mix} = O(n \log(n)).$$
Our Results

Theorem
For all $\delta > 0$, there exists $\Delta_0 = \Delta_0(\delta)$ for all graphs $G = (V, E)$ of maximum degree $\Delta \geq \Delta_0$ and girth ≥ 7, all $\lambda < (1 - \delta)\lambda_c(\Delta)$, the mixing time of the Glauber dynamics satisfies

$$T_{mix} = O(n \log(n)).$$

Mixing Time . . .

$$T_{mix} = \min\{t : \text{ for all } X_0, d_{tv}(X_t, \mu) \leq 1/4\},$$
Our Results

Theorem
For all $\delta > 0$, there exists $\Delta_0 = \Delta_0(\delta)$ for all graphs $G = (V, E)$ of maximum degree $\Delta \geq \Delta_0$ and girth ≥ 7, all $\lambda < (1 - \delta)\lambda_c(\Delta)$, the mixing time of the Glauber dynamics satisfies

$$T_{\text{mix}} = O\left(n \log(n)\right).$$

Corollary
An $O^*(n^2)$ FPRAS for estimating the partition function Z.
Our Results

Theorem
For all $\delta > 0$, there exists $\Delta_0 = \Delta_0(\delta)$ for all graphs $G = (V, E)$ of maximum degree $\Delta \geq \Delta_0$ and girth ≥ 7, all $\lambda < (1 - \delta)\lambda_c(\Delta)$, the mixing time of the Glauber dynamics satisfies

$$T_{mix} = O(n \log(n)).$$

Previous work
$T_{mix} = O(n \log(n))$ for Glauber dynamics on G of maximum degree Δ and $\lambda < 2/((\Delta - 2)$

- Dyer Greenhill, Luby, Vigoda
$O(n \log n)$ mixing for Random Graphs

Corollary

$T_{\text{mix}} = O(n \log n)$ for Glauber dynamics with $\lambda \leq (1 - \delta)\lambda_c(\Delta)$ for

- random Δ-regular graph
- random Δ-regular bipartite graph

Mossel, Weitz, Wormald (2009)
Relaxation for girth

“ # short cycles in the neighborhood of each vertex in G are not too many”
O(n log n) mixing for Random Graphs

Relaxation for girth

“# short cycles in the neighborhood of each vertex in G are not too many”

Corollary

\[T_{mix} = O(n \log n) \] for Glauber dynamics with \(\lambda \leq (1 - \delta)\lambda_c(\Delta) \) for

\begin{itemize}
 \item random \(\Delta \)-regular graph
 \item random \(\Delta \)-regular bipartite graph
\end{itemize}

Mossel, Weitz, Wormald (2009)
$O(n \log n)$ mixing for Random Graphs

Relaxation for girth

“ # short cycles in the neighborhood of each vertex in G are not too many”

Corollary

$T_{mix} = O(n \log n)$ for Glauber dynamics with $\lambda \leq (1 - \delta)\lambda_c(\Delta)$ for

- random Δ-regular graph

Mossel, Weitz, Wormald (2009)
Relaxation for girth

" \# short cycles in the neighborhood of each vertex in \(G \) are not too many"

Corollary

\[T_{mix} = O(n \log n) \] for Glauber dynamics with \(\lambda \leq (1 - \delta) \lambda_c(\Delta) \) for

- random \(\Delta \)-regular graph
- random \(\Delta \)-regular bipartite graph
Relaxation for girth
“# short cycles in the neighborhood of each vertex in G are not too many”

Corollary
$T_{mix} = O(n \log n)$ for Glauber dynamics with $\lambda \leq (1 - \delta)\lambda_c(\Delta)$ for

- random Δ-regular graph
- random Δ-regular bipartite graph

Mossel, Weitz, Wormald (2009)
Belief Propagation on trees

For T and λ

$\mu(v \text{ occupied} | w \text{ unoccupied})$

$q(v, w) = \mu(v \text{ occupied} | w \text{ unoccupied})$

\[R_{v \rightarrow w} = \frac{q(v, w)}{1 - q(v, w)} \]

\[R_{v \rightarrow w} = \lambda \prod_{z \in N(v) \setminus \{w\}} \frac{1}{1 + R_{z \rightarrow v}} \]

BP starts from arbitrary $R_{v \rightarrow w}^0$s, iterates like

\[R_{v \rightarrow w}^i = \lambda \prod_{z \in N(v) \setminus \{w\}} \frac{1}{1 + R_{z \rightarrow v}^{i-1}} \]
(Loopy) Belief Propagation
(Loopy) Belief Propagation

Nothing prevents to use Belief propagation for graph with cycles.
(Loopy) Belief Propagation

Nothing prevents to use Belief propagation for graph with cycles.
 • We do not know whether it converges
(Loopy) Belief Propagation

Nothing prevents to use Belief propagation for graph with cycles.

- We do not know whether it converges
- \ldots if does, we do not know where exactly it converges
BP Convergence for girth ≥ 6
BP Convergence for girth ≥ 6

\[R^i_{v \rightarrow w} = \lambda \prod_{z \in N(v) \setminus \{w\}} \frac{1}{1 + R^{i-1}_{z \rightarrow v}} \]
BP Convergence for girth ≥ 6

\[R^i_{v\rightarrow w} = \lambda \prod_{z \in N(v) \setminus \{w\}} \frac{1}{1 + R^i_{z\rightarrow v}} \quad \text{and} \quad q^i(v, w) = \frac{R^i_{v\rightarrow w}}{1 + R^i_{v\rightarrow w}} \]
BP Convergence for girth ≥ 6

$$R^i_{v \rightarrow w} = \lambda \prod_{z \in N(v) \setminus \{w\}} \frac{1}{1 + R^i_{z \rightarrow v}}$$

and

$$q^i(v, w) = \frac{R^i_{v \rightarrow w}}{1 + R^i_{v \rightarrow w}}$$

Theorem

Let $\delta, \epsilon > 0$, $\Delta_0 = \Delta_0(\delta, \epsilon)$ and $C = C(\delta, \epsilon)$. For G of max degree $\Delta \geq \Delta_0$ and girth ≥ 6, all $\lambda < (1 - \delta)\lambda_c(\Delta)$, the following holds: for $i \geq C$, for all $v \in V$, $w \in N(v)$,

$$\left| \frac{q^i(v, w)}{\mu(v \text{ is occupied} \mid w \text{ is unoccupied})} - 1 \right| \leq \epsilon$$
BP Convergence for girth ≥ 6

\[R_{v \rightarrow w}^i = \lambda \prod_{z \in N(v) \setminus \{w\}} \frac{1}{1 + R_{z \rightarrow v}^{i-1}} \quad \text{and} \quad q^i(v, w) = \frac{R_{v \rightarrow w}^i}{1 + R_{v \rightarrow w}^i} \]

Theorem

Let $\delta, \epsilon > 0$, $\Delta_0 = \Delta_0(\delta, \epsilon)$ and $C = C(\delta, \epsilon)$. For G of max degree $\Delta \geq \Delta_0$ and girth ≥ 6, all $\lambda < (1 - \delta)\lambda_c(\Delta)$, the following holds: for $i \geq C$, for all $v \in V$, $w \in N(v)$,

\[\left| \frac{q^i(v, w)}{\mu(\text{v is occupied} \mid \text{w is unoccupied})} - 1 \right| \leq \epsilon \]

we also have convergence for the BP estimate of $\mu(\text{v is occupied})$
Path Coupling for bounding T_{mix}
Path Coupling for bounding T_{mix}

Path Coupling [Bubley and Dyer 1997]
Path Coupling for bounding T_{mix}

Path Coupling [Bubley and Dyer 1997]
Consider copies $(X_s), (Y_s)$ such that $X_t \oplus Y_t = \{v\}$
Path Coupling [Bubley and Dyer 1997]

Consider copies \((X_s), (Y_s)\) such that \(X_t \oplus Y_t = \{v\}\)
Path Coupling for bounding T_{mix}

Path Coupling [Bubley and Dyer 1997]

Consider copies $(X_s), (Y_s)$ such that $X_t \oplus Y_t = \{v\}$

$$
\mathbb{E} [\Phi(X_{t+1}, Y_{t+1})|X_t, Y_t] \leq (1 - \gamma)\Phi(X_t, Y_t).
$$
Path Coupling for bounding T_{mix}

Path Coupling [Bubley and Dyer 1997]

Consider copies $(X_s), (Y_s)$ such that $X_t \oplus Y_t = \{v\}$

$$\mathbb{E}[\Phi(X_{t+1}, Y_{t+1})|X_t, Y_t] \leq (1-\gamma)\Phi(X_t, Y_t).$$

$\Phi : \Omega \times \Omega \rightarrow \mathbb{R}_{\geq 1}$ is a “distance metric”
Path Coupling for bounding T_{mix}

Path Coupling [Bubley and Dyer 1997]
Consider copies $(X_s), (Y_s)$ such that $X_t \oplus Y_t = \{v\}$

$$
\mathbb{E} [\Phi(X_{t+1}, Y_{t+1}) | X_t, Y_t] \leq (1 - \gamma) \Phi(X_t, Y_t).
$$

$\Phi : \Omega \times \Omega \to \mathbb{R}_{\geq 1}$ is a “distance metric”

$$
\Phi(X, Y) = \sum_{u \in X \oplus Y} \Phi_u
$$
Path Coupling Example
Path Coupling Example
Path Coupling Example

Expected distance

\[E[\Phi(X_{t+1}, Y_{t+1})| X_t, Y_t] = \left(1 - \frac{1}{n}\right) \Phi_v + \sum_{z_i} \Pr[z_i \in Y_{t+1}] \cdot \Phi_{z_i} \]
Path Coupling Example

Expected distance

\[
\mathbb{E} [\Phi(X_{t+1}, Y_{t+1}) | X_t, Y_t] = \left(1 - \frac{1}{n}\right) \Phi_v + \sum_{z_i} \Pr[z_i \in Y_{t+1}] \cdot \Phi_{z_i}
\]
Expected distance

\[
E \left[\Phi(X_{t+1}, Y_{t+1}) \mid X_t, Y_t \right] = \left(1 - \frac{1}{n} \right) \Phi_v + \sum_{z_i} \Pr[z_i \in Y_{t+1}] \cdot \Phi_{z_i}
\]
Path Coupling Example

Expected distance

$$\mathbb{E} [\Phi(X_{t+1}, Y_{t+1}) | X_t, Y_t] = \left(1 - \frac{1}{n} \right) \Phi_v + \frac{1}{n} \sum_{z_i} 1\{z_i \text{ unblocked}\} \frac{\lambda}{1 + \lambda} \Phi_z$$
Path Coupling Example

Path coupling condition

\[\Phi_v > \frac{\lambda}{1 + \lambda} \sum_{z_i} 1\{z_i \text{ unblocked in } Y_t\} \cdot \Phi_{z_i} \]
Key Results

- We don’t know a Φ that gives contraction for worst-case X_t, Y_t.
- We can find Φ when locally X_t, Y_t “behave” like ω^*.
- Glauber dynamics converges locally to ω^*
 - dynamics gets *local uniformity*
- Given Φ and convergence of Glauber dynamics we show rapid mixing
Unblocked Neighbors and loopy BP

\[
\omega_i(z) = \prod_{y \sim z} \omega_{i-1}(y) + \lambda \cdot \omega_i(z)
\]

is the loopy BP estimate of \(z\) to be unblocked.

\(\omega^* \approx \mu\) (\(z\) is unblocked)
Unblocked Neighbors and loopy BP

\[\omega_i^z = \prod_{y \sim z} \frac{1}{1 + \lambda \cdot \omega_y^{i-1}} \]
Unblocked Neighbors and loopy BP

\[\omega^i_z = \prod_{y \sim z} \frac{1}{1 + \lambda \cdot \omega^{i-1}_y} \]

- \(\omega^i(z) \) is the loopy BP estimate of \(z \) to be unblocked
Unblocked Neighbors and loopy BP

\[\omega_z^i = \prod_{y \sim z} \frac{1}{1 + \lambda \cdot \omega_y^{i-1}} \]

- \(\omega^i(z) \) is the loopy BP estimate of \(z \) to be unblocked
- converges to a unique fixed point \(\omega^* \)
Unblocked Neighbors and loopy BP

\[\omega_z^i = \prod_{y \sim z} \frac{1}{1 + \lambda \cdot \omega_y^{i-1}} \]

- \(\omega^i(z) \) is the loopy BP estimate of \(z \) to be unblocked
- converges to a unique fixed point \(\omega^* \)
- \(\omega^*(z) \approx \mu(z \text{ is unblocked}) \)
Back to Path Coupling
Back to Path Coupling

\[\Phi \nu > \lambda + \lambda \sum z_i \{ z_i \text{ unblocked} \} \cdot \Phi z_i \]

when \(X_t, Y_t \) "behave" like \(\omega^* \)

\[\Phi \nu > \lambda \sum z_i \omega^*(z_i) \cdot \Phi z_i \]
Back to Path Coupling

worst case condition

\[\Phi_v > \frac{\lambda}{1 + \lambda} \sum_{z_i} 1\{z_i \text{ unblocked}\} \cdot \Phi_{z_i} \]
Back to Path Coupling

worst case condition

\[\Phi_v > \frac{\lambda}{1 + \lambda} \sum_{z_i} \mathbf{1}\{z_i \text{ unblocked}\} \cdot \Phi_{z_i} \]

when \(X_t, Y_t \) “behave” like \(\omega^* \)

\[\Phi_v > \frac{\lambda}{1 + \lambda} \sum_{z_i} \omega^*(z_i) \cdot \Phi_{z_i} \]
Key Results

- We don’t know a Φ that gives contraction for worst-case X_t, Y_t.
- can find Φ when locally X_t, Y_t “behave” like ω^*
- Glauber dynamics converges locally to ω^*
 - dynamics gets “local uniformity”
- With Φ and local uniformity path coupling gives rapid mixing
Key Results

- We don’t know a Φ that gives contraction for worst-case X_t, Y_t.
- can find Φ when locally X_t, Y_t “behave” like ω^*
- Glauber dynamics converges locally to ω^*
 - dynamics gets “local uniformity”
- With Φ and local uniformity path coupling gives rapid mixing
Finding Φ

There is Φ such that

\[(1 - \delta) \Phi v \geq \sum z_i \lambda \omega^* (z_i) 1 + \lambda \omega^* (z_i) \Phi z_i\]

$\times n$ matrix $C(v, z)$ =

\[
\begin{cases}
\lambda \omega^* (z_i) 1 + \lambda \omega^* (z_i) & \text{if } z_i \in N(v) \\
0 & \text{otherwise}
\end{cases}
\]

There is a vector $\Phi \in \mathbb{R}^V > 0$ such that $C \Phi \leq (1 - \delta) \Phi$.
Finding Φ

Reformulation

There is Φ such that

$$(1 - \delta) \Phi v \geq \sum z_i \lambda \omega^* (z_i) + \lambda \omega^* (z_i) \Phi z_i$$

$n \times n$ matrix $C(v, z) =$

$\begin{cases}
\lambda \omega^* (z) + \lambda \omega^* (z) & \text{if } z \in N(v) \\
0 & \text{otherwise}
\end{cases}$

There is a vector $\Phi \in \mathbb{R}^V > 0$ such that $C \Phi \leq (1 - \delta) \Phi$.
Finding Φ

Reformulation

There is Φ such that

$$(1 - \delta) \Phi v \geq \sum_{z_i} \frac{\lambda \omega^*(z_i)}{1 + \lambda \omega^*(z_i)} \Phi z_i$$
Finding Φ

Reformulation

There is Φ such that

$$(1-\delta)\Phi_v \geq \sum_{z_i} \frac{\lambda\omega^*(z_i)}{1 + \lambda\omega^*(z_i)} \Phi_{z_i}$$

$n \times n$ matrix C

$$C(v, z) = \begin{cases}
\frac{\lambda\omega^*(z)}{1+\lambda\omega^*(z)} & \text{if } z \in N(v) \\
0 & \text{otherwise}
\end{cases}$$
Finding Φ

Reformulation

There is Φ such that

$$(1 - \delta) \, \Phi \, v \geq \sum_{z_i} \frac{\lambda \omega^*(z_i)}{1 + \lambda \omega^*(z_i)} \, \Phi \, z_i$$

*n × n matrix C

$$C(v, z) = \begin{cases}
\frac{\lambda \omega^*(z)}{1 + \lambda \omega^*(z)} & \text{if } z \in N(v) \\
0 & \text{otherwise}
\end{cases}$$

There is a vector $\Phi \in \mathbb{R}^V_{>0}$ such that

$$C \, \Phi \leq (1 - \delta) \, \Phi$$
Connections with Loopy BP

\[\omega_i(z) = \prod_{y \sim z} 1 + \lambda \cdot \omega_i - 1 y \]

\[J^* = J |_{\omega = \omega^*} \]

denote the Jacobian of BP at the fixed point \(\omega^* \).

Relation to Path Coupling

\[C = D - 1 J^* D, \]

where \(D \) is diagonal matrix, with \(D(v, v) = \omega^*(v) \).
Connections with Loopy BP

Jacobian of Loopy BP

\[\omega_i \propto \prod_{y \sim z} 1 + \lambda \cdot \omega_{i-1} \]

\[J^* = |\omega| = \omega^* \] denote the Jacobian of BP at the fixed point \(\omega^* \).

Relation to Path Coupling

\[C = D - 1 \]

\[J^* D, \] where \(D \) is a diagonal matrix, with \(D(v, v') = \omega^*(v) \).
Connections with Loopy BP

Jacobian of Loopy BP

\[\omega_z^i = \prod_{y \sim z} \frac{1}{1 + \lambda \cdot \omega_y^{i-1}} \]

\[J^* = J \bigg|_{\omega=\omega^*} \] denote the Jacobian of BP at the fixed point \(\omega^* \).
Connections with Loopy BP

Jacobian of Loopy BP

\[\omega^i_z = \prod_{y \sim z} \frac{1}{1 + \lambda \cdot \omega^{i-1}_y} \]

\[J^* = J\big|_{\omega=\omega^*} \] denote the Jacobian of BP at the fixed point \(\omega^* \).

Relation to Path Coupling

\[C = D^{-1} J^* D, \]

where \(D \) is diagonal matrix, with \(D(v, v) = \omega^*(v) \).
Covvergence from loopy BP

There is a vector $\Phi \in \mathbb{R}^V > 0$ such that

$$ (D - 1 J^* D) \Phi \leq (1 - \delta) \cdot \Phi $$

has the same eigenvalues as J^*. Spectral radius of BP in uniqueness region

We should expect $\rho(J^*) < 1$, because the fixed point ω^* is attractive.
Covergence from loopy BP

Reduction to BP Spectral radius

There is a vector $\Phi \in \mathbb{R}^V_>$ such that

$$(D^{-1} J^* D) \Phi \leq (1 - \delta) \cdot \Phi$$
Covergence from loopy BP

Reduction to BP Spectral radius

There is a vector $\Phi \in \mathbb{R}^V_{>0}$ such that

$$(D^{-1} J^* D) \Phi \leq (1 - \delta) \cdot \Phi$$

$(D^{-1} J^* D)$ has the same eigenvalues as J^*
Covergence from loopy BP

Reduction to BP Spectral radius

There is a vector \(\Phi \in \mathbb{R}^V_{>0} \) such that

\[
(D^{-1} J^* D) \Phi \leq (1 - \delta) \cdot \Phi
\]

\((D^{-1} J^* D)\) has the same eigenvalues as \(J^* \)

Spectral radius of BP in uniqueness region

We should expect \(\rho(J^*) < 1 \), because the fixed point \(\omega^* \) is attractive
Key Results

- We don’t know a Φ that gives contraction for worst-case X_t, Y_t.
- can find Φ when locally X_t, Y_t “behave” like ω^*
- Glauber dynamics converges locally to ω^*
 - dynamics gets “local uniformity”
- With Φ and local uniformity path coupling gives rapid mixing
Key Results

• We don’t know a Φ that gives contraction for worst-case X_t, Y_t.
• can find Φ when locally X_t, Y_t “behave” like ω^*
• Glauber dynamics converges locally to ω^*
 • dynamics gets “local uniformity”
• With Φ and local uniformity path coupling gives rapid mixing
Local Uniformity

Theorem
Let $\epsilon, \delta > 0$, $\Delta_0 = \Delta_0(\epsilon, \delta)$ and $C = C(\epsilon, \delta)$. Let G of max degree Δ, for $\Delta > \Delta_0$, and girth ≥ 7. For (X_t) the Glauber dynamics with fugacity $\lambda < (1 - \delta)\lambda_c(\Delta)$ and any v the following holds: With probability $1 - \exp(-\Delta/C)$, we have that

$$\# \text{ Unblocked Neighbors of } v \text{ in } X_t < \sum_{z \in N(v)} \omega^*(z) + \epsilon \Delta$$

where $t \geq Cn \log \Delta$.
Key Results

• We don’t know a Φ that gives contraction for worst-case X_t, Y_t.
• can find Φ when locally X_t, Y_t “behave” like ω^*
• Glauber dynamics (approximately) converges locally to ω^*
 • dynamics gets “local uniformity”
• With Φ and local uniformity path coupling gives rapid mixing
Key Results

- We don’t know a Φ that gives contraction for worst-case X_t, Y_t.
- can find Φ when locally X_t, Y_t “behave” like ω^*
- Glauber dynamics (approximately) converges locally to ω^*
 - dynamics gets “local uniformity”
- With Φ and local uniformity path coupling gives rapid mixing
Rapid Mixing with uniformity
Dyer, Frieze, Hayes, Vigoda 2013
There is a single disagreement at ν
Rapid Mixing with uniformity
Dyer, Frieze, Hayes, Vigoda 2013

Run the chains for $Cn \log \Delta$ steps, "burn-in"
Rapid Mixing with uniformity
Dyer, Frieze, Hayes, Vigoda 2013

Run the chains for $Cn \log \Delta$ steps, “burn-in”
The disagreements spread in the graph during burn-in
Rapid Mixing with uniformity

Dyer, Frieze, Hayes, Vigoda 2013

Typically the disagreements do not escape the ball
Typically the disagreements do not escape the ball.
Typically the ball has uniformity.
Interpolate and do path coupling for the pairs, ... pairs with have local uniformity
Interpolate and do path coupling for the pairs,
... pairs with have local uniformity and Φ gives contraction
Rapid Mixing with uniformity
Dyer, Frieze, Hayes, Vigoda 2013

\[E \left[\Phi(X_{C' n \log \Delta}, Y_{C' n \log \Delta}) \mid X_0, Y_0 \right] \leq (1 - \gamma) \Phi(X_0, Y_0) \]
Key Results

• We don’t know a Φ that gives contraction for worst-case X_t, Y_t.
• We can find Φ when $X, Y \sim \omega^*$
• Glauber dynamics converges locally to ω^*
 • dynamics gets uniformity
• Given Φ and local uniformity path coupling gives rapid mixing
Key Results

- We don’t know a Φ that gives contraction for worst-case X_t, Y_t.
- We can find Φ when $X, Y \sim \omega^*$
- Glauber dynamics converges locally to ω^*
 - dynamics gets uniformity
- Given Φ and local uniformity path coupling gives rapid mixing
Local uniformity I

\[R(\sigma, v) = \prod_{w \sim v} \left(1 - \frac{\lambda}{1+\lambda} 1\{w \text{ unblocked by its children}\} \right), \]
Local uniformity 1

\[R(\sigma, v) = \prod_{w \sim v} \left(1 - \frac{\lambda}{1 + \lambda} \mathbf{1}\{w \text{ unblocked by its children}\} \right), \]

\[R(\sigma, v) = \Pr_{Y \sim \mu} [v \text{ is unblocked in } Y | v \not\in Y, Y(S_2(v)) = \sigma(S_2(v))] \]
Local uniformity I

\[R(\sigma, v) = \prod_{w \sim v} \left(1 - \frac{\lambda}{1 + \lambda} \mathbf{1}_{\{w \text{ unblocked by its children}\}} \right), \]

BP for Gibbs measure

Let \(\gamma, \delta > 0 \), \(\Delta_0 = \Delta_0(\gamma, \delta) \) and \(C = C(\gamma, \delta) \). Let \(G \) be of girth \(\geq 6 \) and maximum degree \(\Delta > \Delta_0 \). Let \(X \) be distributed as in \(\mu \) with \(\lambda < (1 - \delta) \lambda_c(\Delta) \).

Then for any vertex \(v \) with probability \(\geq 1 - \exp(-\Delta/C) \) it holds that

\[
\left| R(X, v) - \prod_{z \sim v} \left(1 - \frac{\lambda}{1 + \lambda} R(X, z) \right) \right| < \gamma.
\]
Local uniformity

$$R(\sigma, v) = \prod_{w \sim v} \left(1 - \frac{\lambda}{1 + \lambda} \right) \mathbf{1}\{w \text{ unblocked by its children}\},$$

BP for Glauber dynamics

Let G be of girth ≥ 7 and maximum degree $\Delta > \Delta_0$. Let (X_t) be the Glauber dynamics with $\lambda < (1 - \delta)\lambda_c(\Delta)$. Then for any vertex v and any $t > Cn \log \Delta$ with probability $\geq 1 - \exp(-\Delta/C)$ it holds that

$$\left| R(X_t, v) - \prod_{z \sim v} \left(1 - \frac{\lambda}{1 + \lambda} \mathbb{E}_{t_z} [R(X_{t_z}, z)] \right) \right| < \gamma.$$
Let G be of girth ≥ 7 and maximum degree $\Delta > \Delta_0$. Let (X_t) be the Glauber dynamics with $\lambda < (1 - \delta) \lambda_c(\Delta)$. For all $I = [t_0, t_1]$, where $t_0 = Cn \log \Delta$, for every $v \in V$ with probability $1 - (1 + |I|/n) \exp (-\Delta/C)$, we have that $|R(X_t, v) - \omega^* (v)| \leq \epsilon$.
Lemma
Let G be of girth ≥ 7 and maximum degree $\Delta > \Delta_0$. Let (X_t) be the Glauber dynamics with $\lambda < (1 - \delta) \lambda_c(\Delta)$.
For all $\mathcal{I} = [t_0, t_1]$, where $t_0 = Cn \log \Delta$, for every $v \in V$ with probability $1 - (1 + |\mathcal{I}|/n) \exp(-\Delta/C)$, we have that

$$(\forall t \in \mathcal{I}) \quad |R(X_t, v) - \omega^*(v)| \leq \epsilon.$$
Iterations in space and time
Iterations in space and time

Convergence with Ψ

Potential function

$$\Psi(x) = (\lambda)^{-1} \text{arcsinh}(\sqrt{\lambda}x)$$
Iterations in space and time

Convergence with Ψ

Potential function

$$\Psi(x) = (\lambda)^{-1} \text{arcsinh}(\sqrt{\lambda x})$$
Iterations in space and time

Convergence with Ψ

Potential function

$$\Psi(x) = (\lambda)^{-1} \text{arcsinh}(\sqrt{\lambda x})$$
Iterations in space and time

Convergence with Ψ

Potential function

$$\Psi(x) = (\lambda)^{-1} \text{arcsinh}(\sqrt{\lambda x})$$

Provided

- $t \in I'$ approximate BP equation hold in $B(v, R)$ \(\forall t \in I_{i+1},\)

 $$u \in B(v, i + 1)$$

 $$|\Psi(R(X_t, u)) - \Psi(\omega^*(u))| \leq \alpha_{i+1}$$

\(\forall t \in I_i, u \in B(v, i)\)

$$|\Psi(R(X_t, u)) - \Psi(\omega^*(u))| \leq (1 - \delta)\alpha_{i+1}$$
Iterations in space and time

Convergence with \(\Psi \)

Potential function

\[
\Psi(x) = (\lambda)^{-1} \text{arcsinh}(\sqrt{\lambda x})
\]

Provided

- \(t \in \mathcal{I}' \) approximate BP equation hold in \(B(v, R) \)
- \(\forall t \in \mathcal{I}_{i+1}, \ u \in B(v, i+1) \)

\[
|\Psi(R(X_t, u)) - \Psi(\omega^*(u))| \leq \alpha_{i+1}
\]

\(\forall t \in \mathcal{I}_i, \ u \in B(v, i) \)

\[
|\Psi(R(X_t, u)) - \Psi(\omega^*(u))| \leq (1 - \delta)\alpha_{i+1}
\]
Iterations in space and time

Convergence with Ψ

Potential function

$$
\Psi(x) = (\lambda)^{-1} \text{arcsinh}(\sqrt{\lambda x})
$$

Provided

- $t \in \mathcal{I}'$ approximate BP equation hold in $B(v, R)$
- $\forall t \in \mathcal{I}_{i+1}$, $u \in B(v, i + 1)$

$$
|\Psi(R(X_t, u)) - \Psi(\omega^*(u))| \leq \alpha_{i+1}
$$

$\forall t \in \mathcal{I}_i$, $u \in B(v, i)$

$$
|\Psi(R(X_t, u)) - \Psi(\omega^*(u))| \leq (1 - \delta)\alpha_{i+1}
$$
Iterations in space and time

Convergence with Ψ

Potential function

$$\Psi(x) = (\lambda)^{-1} \text{arcsinh}(\sqrt{\lambda x})$$

Provided

- $t \in \mathcal{I}'$ approximate BP equation hold in $B(v, R)$
- $\forall t \in \mathcal{I}_{i+1}, \ u \in B(v, i + 1)$

$$|\Psi(R(X_t, u)) - \Psi(\omega^*(u))| \leq \alpha_{i+1}$$

$\forall t \in \mathcal{I}_i, \ u \in B(v, i)$

$$|\Psi(R(X_t, u)) - \Psi(\omega^*(u))| \leq (1 - \delta)\alpha_{i+1}$$
Iterations in space and time

Convergence with Ψ

Potential function

$$\Psi(x) = (\lambda)^{-1}\text{arcsinh}(\sqrt{\lambda}x)$$

Provided

- $t \in I'$ approximate BP equation hold in $B(v, R)$
- $\forall t \in I_{i+1}, u \in B(v, i + 1)$

$$|\Psi(R(X_t, u)) - \Psi(\omega^*(u))| \leq \alpha_{i+1}$$

$\forall t \in I_i, u \in B(v, i)$

$$|\Psi(R(X_t, u)) - \Psi(\omega^*(u))| \leq (1 - \delta)\alpha_{i+1}$$
Iterations in space and time

Convergence with Ψ

Potential function

$$\Psi(x) = (\lambda)^{-1} \text{arcsinh} (\sqrt{\lambda x})$$

Provided

- $t \in \mathcal{I}'$ approximate BP equation hold in $B(v, R)$
- $\forall t \in \mathcal{I}_{i+1}, u \in B(v, i + 1)$
 $$|\Psi(R(X_t, u)) - \Psi(\omega^*(u))| \leq \alpha_{i+1}$$
- $\forall t \in \mathcal{I}_i, u \in B(v, i)$
 $$|\Psi(R(X_t, u)) - \Psi(\omega^*(u))| \leq (1 - \delta)\alpha_{i+1}$$
Iterations in space and time

Convergence with Ψ

Potential function

$$\Psi(x) = (\lambda)^{-1} \arcsinh(\sqrt{\lambda x})$$

Provided

- $t \in I'$ approximate BP equation hold in $B(v, R)$
- $\forall t \in I_{i+1}, \ u \in B(v, i + 1)$
 $$|\Psi(R(X_t, u)) - \Psi(\omega^*(u))| \leq \alpha_{i+1}$$
- $\forall t \in I_i, \ u \in B(v, i)$
 $$|\Psi(R(X_t, u)) - \Psi(\omega^*(u))| \leq (1-\delta)\alpha_{i+1}$$
Concluding Remarks

• Rapid mixing for Glauber Dynamics
• $\Delta > \Delta_0$ and girth ≥ 7
• λ in uniqueness
• Path coupling with local uniformity
• "Hamming weights"
• Novel connection between Path Coupling and Loopy BP for both uniformity and Hamming weights
• Techniques from Glauber dynamics to analyze Loopy BP for graphs of girth ≥ 6 in the uniqueness region
• The connection between Glauber dynamics and Loopy BP is deep
• Allows to establish uniformity and weights in a systematic way
Concluding Remarks

- Rapid mixing for Glauber Dynamics
 - G max degree $\Delta > \Delta_0$ and girth ≥ 7
 - λ in uniqueness

- Path coupling with
 - local uniformity
 - "Hamming weights"

- Novel connection between Path Coupling and Loopy BP
 - for both uniformity and Hamming weights

- Techniques from Glauber dynamics to analyze Loopy BP
 - for graphs of girth ≥ 6 in the uniqueness region

- The connection between Glauber dynamics and Loopy BP is deep
 - Allows to establish uniformity and weights in a systematic way
Concluding Remarks

- Rapid mixing for Glauber Dynamics
 - G max degree $\Delta > \Delta_0$ and girth ≥ 7
 - λ in uniqueness
- Path coupling with
Concluding Remarks

- Rapid mixing for Glauber Dynamics
 - G max degree $\Delta > \Delta_0$ and girth ≥ 7
 - λ in uniqueness
- Path coupling with
 - local uniformity

Techniques from Glauber dynamics to analyze Loopy BP for graphs of girth ≥ 6 in the uniqueness region

The connection between Glauber dynamics and Loopy BP is deep, allowing to establish uniformity and weights in a systematic way.
Concluding Remarks

- Rapid mixing for Glauber Dynamics
 - G max degree $\Delta > \Delta_0$ and girth ≥ 7
 - λ in uniqueness
- Path coupling with
 - local uniformity
 - “Hamming weights”

The connection between Glauber dynamics and Loopy BP is deep, allowing to establish uniformity and weights in a systematic way.
Concluding Remarks

• Rapid mixing for Glauber Dynamics
 • G max degree $\Delta > \Delta_0$ and girth ≥ 7
 • λ in uniqueness

• Path coupling with
 • local uniformity
 • “Hamming weights”

• novel connection between Path Coupling and Loopy BP
 • for both uniformity and Hamming weights
Concluding Remarks

• Rapid mixing for Glauber Dynamics
 • G max degree $\Delta > \Delta_0$ and girth ≥ 7
 • λ in uniqueness
• Path coupling with
 • local uniformity
 • “Hamming weights”
• novel connection between Path Coupling and Loopy BP
 • for both uniformity and Hamming weights
• Techniques from Glauber dynamics to analyze Loopy BP
 • for graphs of girth ≥ 6 in the uniqueness region
Concluding Remarks

- Rapid mixing for Glauber Dynamics
 - G max degree $\Delta > \Delta_0$ and girth ≥ 7
 - λ in uniqueness
- Path coupling with
 - local uniformity
 - “Hamming weights”
- novel connection between Path Coupling and Loopy BP
 - for both uniformity and Hamming weights
- Techniques from Glauber dynamics to analyze Loopy BP
 - for graphs of girth ≥ 6 in the uniqueness region
- The connection between Glauber dynamics and Loopy BP is deep
Concluding Remarks

- Rapid mixing for Glauber Dynamics
 - G max degree $\Delta > \Delta_0$ and girth ≥ 7
 - λ in uniqueness
- Path coupling with
 - local uniformity
 - “Hamming weights”
- novel connection between Path Coupling and Loopy BP
 - for both uniformity and Hamming weights
- Techniques from Glauber dynamics to analyze Loopy BP
 - for graphs of girth ≥ 6 in the uniqueness region
- The connection between Glauber dynamics and Loopy BP is deep
 - Allows to establish uniformity and weights in a systematic way
The End

THANK YOU!