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Abstract

For a wide class of continuous-time Markov processes evolving on an open, connected
subset of Rd, the following are shown to be equivalent:

(i) The process satisfies (a slightly weaker version of) the classical Donsker-Varadhan
conditions;

(ii) The transition semigroup of the process can be approximated by a finite-state hidden
Markov model, in a strong sense in terms of an associated operator norm;

(iii) The resolvent kernel of the process is ‘v-separable’, that is, it can be approximated
arbitrarily well in operator norm by finite-rank kernels.

Under any (hence all) of the above conditions, the Markov process is shown to have a
purely discrete spectrum on a naturally associated weighted L∞ space.

Keywords: Markov process, hidden Markov model, hypoelliptic diffusion, stochastic Lya-
punov function, discrete spectrum

∗Corresponding author. Department of Informatics, Athens University of Economics and Business, Patis-
sion 76, Athens 10434, Greece. Email: yiannis@aueb.gr. I.K. was supported by the European Union and Greek
National Funds through the Operational Program Education and Lifelong Learning of the National Strategic
Reference Framework through the Research Funding Program Thales-Investing in Knowledge Society through
the European Social Fund.
†Department of Electrical and Computer Engineering, University of Florida, Gainesville, USA. Email:

meyn@ece.ufl.edu. S.P.M. was supported in part by the National Science Foundation ECS-0523620, and
AFOSR grant FA9550-09-1-0190. Any opinions, findings, and conclusions or recommendations expressed in
this material are those of the authors and do not necessarily reflect the views of the National Science Founda-
tion or AFOSR.



Approximating a Diffusion by a Finite-State HMM 1

1 Introduction

Consider a continuous-time Markov process Φ = {Φ(t) : t ≥ 0} taking values in an open,
connected subset X of Rd, equipped with its associated Borel σ-field B. We begin by assuming
that Φ is a diffusion; that is, it is the solution of the stochastic differential equation,

dΦ(t) = u(Φ(t))dt+M(Φ(t))dB(t), t ≥ 0, Φ(0) = x, (1)

where u = (u1, u2, . . . , ud)
T : X → Rd and M : X → Rd × Rk are locally Lipschitz, and

B = {B(t) : t ≥ 0} is k-dimensional standard Brownian motion. [Extensions to more general
Markov processes are briefly discussed in Section 1.4.] Unless explicitly stated otherwise,
throughout the paper we assume that:

The strong Markov process Φ is the unique strong solution of (1)
with continuous sample paths.

}
(A1)

The distribution of the process Φ is described by the initial condition Φ(0) = x ∈ X and the
transition semigroup {P t}: For any t ≥ 0, x ∈ X, A ∈ B,

P t(x,A) := Px{Φ(t) ∈ A} := Pr{Φ(t) ∈ A |Φ(0) = x}.

Recall that the kernel P t acts as a linear operator on functions f : X→ R on the right and
on signed measures ν on (X,B) on the left, respectively, as,

P tf (x) =

∫
f(y)P t(x, dy), νP t (A) =

∫
ν(dx)P t(x,A), x ∈ X, A ∈ B,

whenever the above integrals exist. Also, for any signed measure ν on (X,B) and any function
f : X→ R we write ν(f) :=

∫
fdν, whenever the integral exists. In this paper we will constrain

the domain of functions f to a Banach space defined with respect to a weighted L∞ norm.
One of the central assumptions we make throughout the paper is the following regularity

condition on the semigroup:

The transition semigroup admits a continuous density: There is a
continuous function p on (0,∞)× X× X such that,

P t(x,A) =

∫
A
p(t, x, y) dy , x ∈ X, A ∈ B.


(A2)

Hörmander’s theorem [30, Thm. 38.16] gives sufficient conditions for (A2). Explicit bounds
on the density are also available; see [27] and its references.

1.1 Irreducibility, drift, and semigroup approximations

The ergodic theory of continuous-time Markov processes is often most easily addressed by
translating results from the discrete-time domain. This is achieved, e.g., in [8, 24, 25, 23]
through consideration of the Markov chain whose transition kernel is defined by one of the
resolvent kernels of Φ, defined as,

Rα :=

∫ ∞
0

e−αtP t dt, α > 0. (2)
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In the case α = 1 we simply write R := R1 =
∫∞
0 e−tP t dt, and call R “the” resolvent kernel

of the process Φ.
The family of resolvent kernels {Rα} is simply the Laplace transform of the semigroup, so

that each Rα admits a density under (A2). This density will not be continuous in general, so
we will truncate to obtain the positive kernel,

Rα =

∫ t1

t0

e−αtP t dt , (3)

where 0 < t0 < t1 < ∞ will be chosen so that Rα is a good approximation to Rα. The
approximation admits a continuous density under (A2),

Rα(x,A) =

∫
A
ξα(x, y) dy , x ∈ X, A ∈ B, (4)

where for each x, y,

ξα(x, y) =

∫ t1

t0

e−αtp(t, x, y) dt.

Proposition 1.1. Under Assumptions (A1) and (A2), for any α > 0, the resolvent kernel
Rα has the strong Feller property. Moreover, there exist continuous functions sα, nα : X→ R+

that are not identically zero, and satisfy,

Rα(x, dy) ≥ sα(x)nα(y) dy, x, y ∈ X. (5)

Proof. Condition (A2) implies the strong Feller property for the semigroup {P t}, that is,
the function P tf is continuous whenever f is measurable and bounded, for t > 0. It is
then straightforward to show that the kernel Rα also has the strong Feller property for any
0 < α <∞.

The existence of the functions sα and nα in the lower bound follows from the obvious
bound Rα ≥ Rα. �

The function sα and the positive measure defined by µα(dy) = nα(y)dy are called small,
and the inequality (5) is written in terms of an outer product as, Rα ≥ sα ⊗ µα; cf. [26, 22].
Without loss of generality (through normalization) we always assume that µα(X) = 1, so that
µα defines a probability measure on (X,B).

Some of the results on ergodic theory require the following ‘reachability’ condition for Φ;
it is a mild irreducibility assumption:

There is a state x0 ∈ X such that, for any x ∈ X and any open set O
containing x0, we have,

P t(x,O) > 0, for all t ≥ 0 sufficiently large.

 (A3)

Under (A3) we are assured of a single communicating class, since then the process is ψ-
irreducible and aperiodic with ψ( · ) := R(x0, · ): For all x ∈ X and all A ∈ B such that
R(x0, A) > 0, we have,

P t(x,A) > 0, for all t sufficiently large.
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See [24, Theorem 3.3] and Proposition 2.2 below.
Recall that the generator of Φ is expressed, for bounded C2 functions f : X→ R, as,

Df (x) =
∑
i

ui(x)
d

dxi
f (x) + 1

2

∑
ij

Σij(x)
d2

dxi dxj
f (x), x ∈ X, (6)

or, in more compact notation,

D = u · ∇+ 1
2trace (Σ∇2),

where Σ = MMT. Rather than restricting attention to C2 functions, we consider the extended
generator, as in our previous work [20, 24]. The function f : X → R is in the domain of D if
there exists a function g : X→ R such that the stochastic process defined by,

M(t) = f(Φ(t))−
∫ t

0
g(Φ(s)) ds, t ≥ 0, (7)

is a local martingale, for each initial condition Φ(0) [9, 30]. We then write g = Df .
If M is in fact a martingale, then the following integral equation holds:

P tf = f +

∫ t

0
P sg ds, t ≥ 0 . (8)

See Proposition 2.4 for a class of functions (f, g) solving (8).
Fleming’s nonlinear generator [12] for the continuous-time Markov process Φ is defined

via,
H(F ) := e−FDeF . (9)

Its domain is the set of functions F for which f = eF is in the domain of D. Theory sur-
rounding multiplicative ergodic theory and large deviations based on the nonlinear generator
is described, e.g., in [10, 36, 11, 20]. We say that the Lyapunov drift criterion (DV3) holds
with respect to the Lyapunov function V : X→ (0,∞], if there exist a function W : X→ [1,∞),
a compact set C ⊂ X, and constants δ > 0, b <∞, such that,

H(V ) ≤ −δW + bIC . (DV3)

In most of the subsequent results, the following strengthened version of (DV3) is assumed:

Condition (DV3) holds with respect to continuous functions V,W
that have compact sublevel sets.

}
(A4)

Recall that the sublevel sets of a function F : X→ R+ are defined by,

CF (r) = {x ∈ X : F (x) ≤ r}, r ≥ 0. (10)

Note that the local Lipschitz assumption in (1) together with (DV3) imply (A1); namely,
that (1) has a unique strong solution Φ with continuous sample paths; see [25, Theorem 2.1]
and [30, Theorem 11.2].
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Conditions (A1–A4) are essentially equivalent to (but weaker than) the conditions imposed
by Donsker and Varadhan in their pioneering work [5, 6, 7]. Condition (DV3) is a generalization
of the drift condition of Donsker and Varadhan. Variants of this drift condition are used in
[1, 36, 28, 19, 15], and (DV3) is the central assumption in [20].

One important application of (DV3) here and in [20] is in the truncation of the state space –
this is how we obtain a hidden Markov model (HMM) approximation, where the approximating
process eventually evolves on a compact set. Important related results have been obtained by
Wu; see [35, 36, 37] and the references therein. Wu, beginning with his 1995 work [35], has
developed a similar truncation technique for establishing large deviations limit theorems, as
well as the existence of a spectral gap in the Lp norm, in a spirit similar to this paper and
[20]. For bibliographies on these methods and other applications see [14, 15]. A significant
further contribution of the present paper, in contrast to the earlier work mentioned, is the
introduction of the weighted L∞ norm for applications to large deviations theory and spectral
theory. In particular, for non-reversible Markov processes, the theory is greatly simplified and
extended by posing spectral theory within the weighted L∞ framework.

The weighted norm is based on the Lyapunov function V from (DV3). We let v = eV and
define, for any measurable function g : X→ R,

‖g‖v := sup
{ |g(x)|
v(x)

: x ∈ X
}

;

cf. [34, 18, 17] and the discussion in [22]. The corresponding Banach space is denoted Lv∞ :=
{g : X→ R : ‖g‖v <∞}, and the induced operator norm on linear operators K : Lv∞ → Lv∞ is,

|||K|||v := sup
{‖Kh‖v
‖h‖v

: h ∈ Lv∞, ‖h‖v 6= 0
}
.

An analogous weighted norm is defined for signed measures ν on (X,B) via,

‖ν‖v := sup
{ |ν(h)|
‖h‖v

: h ∈ Lv∞, ‖h‖v 6= 0
}
.

The operator on Lv∞ induced by the resolvent kernel R will be shown to satisfy |||R|||v <∞
under (DV3) (see Proposition 2.1), and it is known that |||P t|||v is uniformly bounded in t under
this condition (see the proof of Theorem 6.1 of [25]).

All of the approximations in this paper are obtained with respect to ||| · |||v. Our main
results are all based on Theorem 1.5 below, which establishes conditions ensuring that the
semigroup {P t} of the process Φ can be approximated (in this weighted operator norm) by a
semigroup written in terms of finite-rank kernels. In particular, Theorem 1.5 states that the
Donsker-Varadhan condition (DV3) holds if and only if the process Φ can be approximated
by an HMM in operator norm.

The approximating HMM is based on a generator that is a finite-rank perturbation of the
identity, of the form,

E = κ
[
−I + IC0 ⊗ ν1 +

N∑
i,j=1

rij ICi ⊗ νj
]

(11)

where {Ci : 1 ≤ i ≤ N} is a finite collection of disjoint, precompact sets, C0 is the complement
of their union, X\∪1≤i≤NCi, and {νi} are probability measures on (X,B) with each νi supported
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on Ci. The constants κ and {rij} are nonnegative, and the {rij} define a transition matrix
on the finite set {1, 2, . . . , N}. The approximating semigroup is expressed as the exponential
family,

Qt = etE , t ≥ 0, (12)

where the exponential is defined via the usual power-series expansion. The family of resolvent
kernels of the semigroup {Qt} is denoted Tα, α > 0, where,

Tα =

∫ ∞
0

e−αtQt dt. (13)

The generator E will be constructed so that Tα approximates Rα in Lv∞ for α in a neighborhood
of unity (see Proposition 3.4).

While connections between separability and condition (DV3) were previously established
in [37, 20], Theorem 1.5 goes well beyond prior work. In particular, the equivalence between
(DV3) and the finite-state HMM approximation in the strong sense given in the theorem cannot
be foreseen based on earlier results. Although the main results of [37, 20] admit extensions
to Markov models in continuous time, essential properties of a diffusion must be exploited to
obtain the uniform bound (14).

Theorem 1.2. [(DV3) ⇔ HMM approximation] For a Markov process Φ on X satisfying
conditions (A1), (A2) and (A3), the following are equivalent:

(i) Donsker-Varadhan Assumption: Condition (DV3) holds in the form given
in (A4).

(ii) HMM approximation: There exists a continuous function v : X → [1,∞) with
compact sublevel sets (possibly different from the function v in (i)), such that the
following approximations hold: For each ε > 0 and δ ∈ (0, 1), there exists a semigroup
{Qt} as in (12) with generator E of the form given in (11) and with an associated
family of resolvent kernels {Tα} as in (13), satisfying the following:

(a) Resolvent approximation: The resolvent kernels (2) and (13) satisfy,

|||Rα − Tα|||v ≤ ε, δ ≤ α ≤ δ−1.

(b) Semigroup approximation:

‖P tg −Qtg‖v ≤ ε(‖g‖v + ‖D2g‖v), t ≥ 0 , (14)

for each C4 function g with compact support.

(c) Invariant measure approximation: The two semigroups have unique invari-
ant probability measures π and $, satisfying,

‖π −$‖v ≤ ε.

Proof. The proof is based on several results contained in Section 3:
For the implication (i) ⇒ (ii), the function v appearing in (A4) can be chosen the same

as the function v appearing in (iia)–(iic). The implication (i) ⇒ (iia) is contained in Proposi-
tion 3.4; the implication (i)⇒ (iib) follows from Proposition 3.7 combined with Proposition 3.8;
and the implication (i) ⇒ (iic) is given in Corollary 3.9.

Finally, the implication (ii) ⇒ (i) follows from Proposition 3.1: Under (ii) it follows that
(A4) holds for continuous functions V−,W−, where V− ∈ LV∞. �
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We next consider the probabilistic side of this theory, and we show that a Markov process
with generator of the form given in (11) admits a representation as a finite-state hidden Markov
model.

1.2 Hidden Markov model approximations

A finite-state space hidden Markov model (HMM) in continuous time is defined as a pair
(Υ, I), where I is a Markov process with finite state space XI . The first component Υ is
called the observation process; it is a stochastic process taking values in some set Y. The joint
dynamics are described as follows: There is a family of probability measures {νi} on Y such
that, for all measurable A ⊂ Y,

P{Υ(t) ∈ A | (Υ(s), I(s)), s < t; I(t) = i} = νi(A), i ∈ XI .

Here we explain how, under our conditions, the continuous time Markov process Φ may be
approximated by the finite-state process Υ of an appropriately constructed HMM. In fact,
here the HMM will be special, in that the process Υ itself will be Markovian.

Recall that the generator D of Φ will be approximated by a generator E of the form given

in (11). Let Y denote the compact set Y :=
⋃N
i=1Ci, and let Ψ denote the continuous-time

Markov process with generator E , and with corresponding transition semigroup {Qt} defined
in (12). The process Ψ will define the observation process Υ in our HMM approximation.

A probabilistic description of Ψ is based on a sequence of jump times {τk : k ≥ 0}, with
τ0 := 0. The description of τ1 depends on the initial condition Ψ(0) = x: Let i denote the
unique index for which x ∈ Ci. If i 6= 0, we construct N independent exponential random
variables with respective means equal to {(κrij)−1 : 1 ≤ j ≤ N}, and the first jump after
time τ0 := 0 is defined as the minimum of these exponential random variables. If i = 0, i.e.,
Ψ(0) = x ∈ C0, then τ1 is given by the value of an exponential random variable with mean
1/κ. Letting j denote the index corresponding to the minimizing exponential random variable
if i 6= 0, or taking j = 1 if x ∈ C0, we define Ψ(t) = x for 0 = τ0 ≤ t < τ1, and let Ψ(τ1) be a
sample from the distribution νj .

This procedure is continued iteratively to define the sequence of sampling times {τk} along
with the jump process Ψ. To see that Ψ can be viewed as an HMM we first present a simplified
expression for the semigroup {Qt}.
Proposition 1.3. Consider the process Ψ with generator E as in (11) and semigroup {Qt} as
in (12). If the initial state Ψ(0) is distributed according to some probability measure Ψ(0) ∼ µ
of the form µ =

∑N
i=1 piνi, where the vector p = (p1, p2, . . . , pN ) ∈ RN+ satisfies

∑
pi = 1, then

the distribution µQt of Ψ(t) at time t > 0 can be expressed as,

µQt =
∑

pi(t)νi, t > 0, where p(t) = e−κ(I−r)tp ,

and κ, r = {rij} are the coefficients of the generator E in (11).

Proof. It suffices to prove the result with µ = νi for some i; the general case follows by linearity.
The power series representation of Qt implies that νiQ

t can be expressed as a convex
combination of {νj} for each t,

νiQ
t =

N∑
j=1

%ij(t)νj , t ≥ 0. (15)
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An expression for the coefficients {%ij(t)} can be obtained from the differential equation,

d

dt
Qt = EQt,

as follows: Writing νiE = κ
(
−νi +

∑N
j=1 rijνj

)
, we conclude that, for any t ≥ 0,

d

dt
νiQ

t = κ
[
−νi +

N∑
j=1

rijνj

]
Qt = κ

N∑
k=1

[
−%ik(t)νk +

N∑
j=1

rij%jk(t)νk

]
.

Therefore, the coefficients % ∈ RN2
appearing in (15) satisfy,

d

dt
%ik(t) = κ

[
−%ik(t) +

N∑
j=1

rij%jk(t)
]
.

Given the initial condition %ij(0) = I, the solution to this ODE is given by, %(t) = e−κ(I−r)t,
t ≥ 0, as required. �

For the HMM construction, let I denote a finite-state, continuous-time Markov process,
with values in {0, 1, 2, . . . , N}. Its rate matrix is denoted by qij := κrij for i 6= j, and qii :=
−
∑

j 6=i qij . We take r01 = 1 and r0i = 0 for all i 6= 1.
Written as an (N + 1)× (N + 1) matrix, this becomes q = −κ(I − r). The process I is the

hidden state process; the set XI = {1, 2, . . . , N} will be an absorbing set for I. Conditional on
I, we define the observed HMM process, denoted Υ = {Υ(t)}, as follows. Letting {τi} denote
the successive jump times of I, Υ(t) is constant on the interval t ∈ [τi, τi+1), and satisfies for
each A ∈ B and i = 0, 1, 2, . . .,

P{Υ(τi) ∈ A | Υ(t), t < τi; I(t), t < τi; I(τi) = k} = P{Υ(τi) ∈ A | I(τi) = k} = νk(A).

An immediate consequence of the definitions is that Ψ can be expressed as an HMM:

Proposition 1.4. Suppose that Ψ(0) ∼ νi for some i ≥ 1, and that the HMM is initialized in
state i, i.e., I(0) = i. Then the jump process Ψ and the HMM Υ are identical in law. More
generally, if Ψ(0) = x ∈ Ci and I(0) = i, for some i = 0, 1, . . . , N , then the jump process Ψ
and the HMM Υ are identical in law following the first jump,

{Ψ(t) : t ≥ τ1}
dist
= {Υ(t) : t ≥ τ1}.

1.3 Separability and the spectrum

The key property we will use to establish that a process Φ can be approximated by an HMM
as in Theorem 1.2 will be the “v-separability” of its resolvent R. Following [20] we say that
a kernel K is v-separable with respect to some function v : X → [1,∞), if |||K|||v < ∞ and,
for each ε > 0, there exists a compact set Y ⊂ X and a finite-rank, probabilistic kernel T
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supported on Y, such that |||K − T |||v ≤ ε. By ‘finite-rank’ we mean there are functions {si},
measures {νj}, and nonnegative constants {θij} such that,

T =
N∑

i,j=1

θijsi ⊗ νj . (16)

A kernel T is ‘probabilistic’ if T (x,X) = 1 for all x ∈ X.
Our next result gives an alternative characterization of the Donsker-Varadhan condition

(DV3), showing that it is equivalent to v-separability of the resolvent. A similar result in
discrete time appears in [37, 20]. The implication (ii) ⇒ (i) is contained in Proposition 3.1.
The forward implication (i) ⇒ (ii) follows from Proposition 3.2.

Theorem 1.5. [(DV3) ⇔ v-Separability] For a Markov process Φ on X satisfying condi-
tions (A1) and (A2), the following are equivalent:

(i) Donsker-Varadhan Assumptions: Condition (DV3) holds in the form given
in (A4).

(ii) v-Separability: The resolvent kernel R is v-separable, for a continuous function
v with compact sublevel sets, possibly different from the one in (i).

The following result follows immediately from Theorem 1.5 and Proposition 3.4, combined
with [20, Theorem 3.5]. Recall that the spectrum S(K) ⊂ C of a linear operator K on Lv∞ is
the set of z ∈ C such that the inverse [Iz −K]−1 does not exist as a bounded linear operator
on Lv∞.

Theorem 1.6. [(DV3) ⇒ Discrete Spectrum] Let Φ be a Markov process satisfying con-
ditions (A1) and (A2). If Φ also satisfies the drift condition (DV3) in the form given in (A4),
then the spectrum of the resolvent kernel is discrete in Lv∞.

1.4 Extensions

Further connections between (DV3), v-separability, multiplicative mean ergodic theorems, and
large deviations for continuous-time Markov processes will be considered in subsequent work,
generalizing and extending the discrete-time results of [20]. In particular, under (DV3), the
process Φ is “multiplicatively regular” and satisfies strong versions of the “multiplicative mean
ergodic theorem.” These results, in turn, can be used to deduce a large deviations principle
for the empirical measures induced by Φ. Moreover, the rate function can be expressed in
terms of the entropy rate, as in [5, 4, 20].

The technical arguments used in the proofs of all the central results here can easily be ex-
tended beyond the class of continuous-sample-path diffusions in Rd. Although such extensions
will not be pursued further in this paper, we note that the assumption (A1) can be replaced
by the condition that Φ is a nonexplosive Borel right process (so that it satisfies the strong
Markov property and has right-continuous sample paths) on a Polish space X. Assumptions
(A2) and (A3) can be maintained as stated; the conclusions of Proposition 2.2 continue to
hold in this more general setting. Assumption (A4) can also be maintained without modifica-
tion. The resolvent equations in Proposition 2.4 hold in this general setting, which is what is
required in the converse theory that provides the implication (ii) =⇒ (i) in Theorem 1.2.
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Finally, there are applications to consider, as well as bridges to other areas such as statistics,
machine learning, and operations research [2, 3]. The approximation introduced in this paper
is similar to the approximation performed in the modeling technique known as probabilistic
latent semantic analysis (PLSA); see [16] for the basic concepts, and [13, 31] for surveys
that describe connections with techniques from other fields. Given a large m ×m matrix P
representing associations between different objects, the goal is to find an approximating matrix
T , an m× r matrix S, and an r ×m matrix N such that r � m and,

T = SN =
r∑
i=1

sin
T
i ,

where {si : 1 ≤ i ≤ r} denote the columns of S, and {nT
i : 1 ≤ i ≤ r} denote the rows of

N . Hence, the goal is to find a transition matrix of reduced rank, exactly as in this paper.
Our work provides motivation and rigorous justification for the use PLSA models, even when
the state space is general, and even for Markov models evolving in continuous time, as well
as motivation for the development of approximation theory for diffusions based on observed
trajectories of the process.

The remainder of the paper is organized as follows. The following section develops results
establishing approximations between the process Φ and a simple jump process. This is a
foundation for Section 3 that establishes similar approximations with an HMM.

2 Resolvents and Jump-Process Approximations

We begin in this section with an approximation of the process Φ by a pure jump-process
denoted Φκ, evolving on the state space X. The fixed constant κ > 0 denotes the jump
rate. The jump times {τi : i ≥ 0} define a Poisson process: τ0 = 0, and the increments
are i.i.d. with exponential distribution and mean κ−1. At the time of the ith jump we have
Φκ(τi) ∼ κRκ(x, · ), given that Φκ(τi−1) = x. This process is Markov, with generator,

Dκ := κ[−I + κRκ]. (17)

This is the generator for the Markov process used in the proof of the Hille-Yosida theorem in
[29].

Throughout this section it is assumed that |||Rκ|||v < ∞, with v being continuous, with
compact sublevel sets. Hence the generator Dκ also has finite norm. This is justified by
the following proposition, whose proof may be found in the Appendix. The following drift
condition is a relaxation of (DV3),

Dv ≤ −v + bv, (18)

where bv is a finite constant, and v : X→ [1,∞).

Proposition 2.1. Let Φ be a Markov process satisfying (A1).

(i) If (A4) holds, then there is a function v : X → [1,∞) and a finite constant bv
satisfying (18).
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(ii) If (18) holds for a function v : X → [1,∞) and a positive constant bv, then the
following bounds hold,

|||(αRα)n|||v ≤ 1 + bv, for all n ≥ 1, α > 0;

π(v) ≤ bv, for any invariant probability measure π.

where bv is the constant in (18).
�

We next review some background on ψ-irreducible Markov processes.

2.1 Densities, irreducibility and ergodicity

The density condition (A2) combined with the existence of a Lyapunov function as in (DV3)
implies ergodicity. Recall that a Markov process Φ with a unique invariant probability measure
π is called v-uniformly ergodic for some function v : X → R, if there are constants β0 > 0,
B0 <∞, such that,

|||P t − 1⊗ π|||v ≤ e
B0−β0t, t ≥ 0.

See [24] for basic theory of ψ-irreducible Markov processes, including definitions of small sets
and aperiodicity in this general state-space setting.

Proposition 2.2. If conditions (A1), (A2) and (A3) hold, then the Markov process Φ is ψ-
irreducible and aperiodic with ψ( · ) :=R(x0, · ), and all compact sets are small. If, in addition,
(DV3) holds, then the process is v-uniformly ergodic with v = eV .

Proof. Under (A1) and (A2) the Markov process is a T-process, since R has the strong Feller
property [24]. This combined with (A3) easily implies ψ-irreducibility with ψ( · ) = R(x0, · ).
Under (A3), for any set A satisfying ψ(A) > 0, we have P t(x,A) > 0 for all t ≥ 0 sufficiently
large. The proof is similar to the proof of Proposition 6.1 of [24]. Hence the process is
aperiodic. To see that all compact sets are small, we note that all compact sets are petite by
[24, Theorem 4.1]. Under aperiodicity, petite sets are small; this is proved as in the discrete-
time case [22, Theorem 5.5.7].

To see that Φ is v-uniformly ergodic note that, under (DV3), we have,

Dv ≤ −δv + b0vIC ,

where b0v = b supx∈C v(x). This is condition (V4) of [8], and hence the conclusion follows from
the main result of [8]. �

Ergodic theory based on drift conditions such as (V4) is based in part on the following
Comparison theorem; see [22] for the discrete-time counterpart.

Proposition 2.3. If Dh ≤ −f + g for nonnegative functions (h, f, g), and if h is continuous,
then

(i) For any T > 0,

Ex
[
h(Φ(T )) +

∫ T

0
f(Φ(t)) dt

]
≤ h(x) + Ex

[∫ T

0
g(Φ(t)) dt

]
. (19)
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(ii) For any α > 0,
αRαh+Rαf ≤ h+Rαg.

Proof. The proof of (i) is precisely the same as in the proof of the comparison theorem in
discrete time [22]. Part (ii) follows from (i) on multiplying each side of (19) by αe−αT , and
integrating over T ∈ R. �

2.2 Resolvent equations

Recall the construction of the process Φκ with generator Dκ as in (17). We denote the
semigroup of Φκ by P tκ := etDκ , t ≥ 0, and its associated family of resolvent kernels by Rκ, α:

Rκ,α :=

∫ ∞
0

e−αtP tκ dt, α > 0. (20)

Proposition 2.4 states the resolvent equations, and establishes some simple corollaries.

Proposition 2.4. Suppose the process Φ satisfies (A1) and Φκ is the jump process with
generator Dκ as in (17). Then, for any positive constants α, β we have:

(i) The resolvent equation holds,

Rα = Rβ + (β − α)RβRα = Rβ + (β − α)RαRβ. (21)

(ii) For each α > 0 and any measurable function h : X → R for which Rα|h| is finite-
valued, the function f = Rαh is in the domain of D, and,

DRαh = αRαh− h. (22)

Moreover, with g = αRαh − h the stochastic process (7) is a martingale, so that (8)
holds.

(iii) The resolvent of Φκ satisfies the analogous identity,

DκRκ, αh = αRκ, αh− h, if Rκ, α|h| is finite valued. (23)

(iv) The generators for Φ and Φκ are related by,

Dκh = D[κRκ]h if Rκ|h| is finite valued; (24)

Proof. Part (i) is the usual resolvent equation [9]. Part (iii) follow directly from (ii), and (iv)
follows from (i) and (ii).

It remains to prove the resolvent equation (22) in the strong form: (8) holds with f = Rαh
and g = αRαh− h. We have by Fubini’s theorem,

P T f =

∫ ∞
0

e−αtP t+Th dt = eαT
∫ ∞
T

e−αtP th dt.
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Suppose first that h is bounded. It follows from Assumption A2 then P th is a continuous
function of t. Hence P T f is C1 with,

d

dT
P T f = αeαT

∫ ∞
T

e−αtP th dt− eαTP Th = P T g.

The identity (8) thus holds, by the fundamental theorem of calculus.
If h is not bounded we can construct a sequence of functions {hn} satisfying |hn(x)| ≤

min(|h(x)|, n) for each n and x, and hn(x) → h(x) as n → ∞ for each x. We then have for
each n and t, with fn = Rαhn and gn = αRαhn − hn,

P tfn = fn +

∫ t

0
P sgn ds.

Under the assumption that Rα|h| is finite-valued, it follows that P t|f | and
∫ t
0 P

s|g| ds are
finite-valued. The desired conclusion (8) thus follows by dominated convergence. �

The resolvent equation (22) implies that [αI −D] is a left inverse of Rα for any α > 0, in
the sense that [αI −D]Rαf = f for an appropriate class of functions f . While Rα cannot be
expressed as a true operator inverse on the space Lv∞, it is in fact possible to obtain such a
representation for Rκ,α. This is made precise in the following.

Lemma 2.5. Suppose the process Φ satisfies (A1) and the drift condition (18). Then, for any
α > 0,

Rκ, α = [αI −Dκ]−1 = [αI − κ(κRκ − I)]−1 =
κ

(κ+ α)2

∞∑
n=−1

(1 + ακ−1)−n(κRκ)n+1, (25)

where the sum converges in Lv∞. Moreover,

|||αRκ, α|||v ≤ 1 + bv. (26)

Proof. For any n ≥ 0, κ > 0, we have the bound |||(κRκ)n+1|||v ≤ 1+bv, from Proposition 2.1 (ii).
The representation (23) implies that the inverse can be expressed as the power series (25),
which is convergent in Lv∞. Since αI − Dκ is a left inverse of Rκ, α, it then follows that
Rκ, α = [αI −Dκ]−1.

To establish the bound (26) we apply the triangle inequality,

|||Rκ, α|||v ≤
κ

(κ+ α)2

∞∑
n=−1

(1 + ακ−1)−n|||κRκ|||n+1
v .

Using once more the bound |||κRκ|||n+1
v ≤ 1 + bv, and simplifying the expression for the sum in

the following bound,

|||Rκ, α|||v ≤ (1 + bv)
κ

(κ+ α)2

(
1 + ακ−1

1− (1 + ακ−1)−1

)
,

we obtain the bound in (26), as claimed. �



Approximating a Diffusion by a Finite-State HMM 13

2.3 Resolvent approximations

Under (DV3) or, more generally, under the weaker drift condition (18), we obtain the following
strong approximation for the resolvent kernels:

Proposition 2.6. Suppose the process Φ satisfies (A1) and Φκ is the jump process with
generator Dκ defined in (17). If Φ satisfies the drift condition (18), then, for each α < κ:

|||Rκ, α −Rα|||v ≤
4

κ
(1 + bv).

Proof. We first obtain a power series representation for Rα not in terms of its generator, but in
terms of the resolvent kernel Rκ. The resolvent equation (21) with β = κ and α > 0 arbitrary
gives [I − (κ−α)Rκ]Rα = Rκ. Since 0 < α < κ and Rκ(x,X) = κ−1 for each x, it follows that
Rα can be expressed as the power series,

Rα = [I − (1− ακ−1)κRκ]−1Rκ =
1

κ

∞∑
n=0

(1− ακ−1)n(κRκ)n+1.

Proposition 2.1 (ii) gives the uniform bound, |||(κRκ)n+1|||v ≤ 1 + bv, which implies that this
sum converges in Lv∞.

Applying Lemma 2.5, we conclude that the difference of the two resolvent kernels Rκ, α
and Rα can be decomposed into three terms:

Rκ, α −Rα =
( κ

(κ+ α)2
− 1

κ

) ∞∑
n=0

(1 + ακ−1)−n(κRκ)n+1 (27a)

+
1

κ

∞∑
n=0

(
(1 + ακ−1)−n − (1− ακ−1)n

)
(κRκ)n+1 (27b)

+
( κ

(κ+ α)2
(1 + ακ−1)−n

∣∣∣
n=−1

)
I. (27c)

To bound the first term (27a) we apply Proposition 2.1 (ii):

1

(1 + bv)
|||RHS of (27a)|||v ≤

∣∣∣ κ

(κ+ α)2
− 1

κ

∣∣∣ ∞∑
n=0

(1 + ακ−1)−n

=
(1

κ
− κ

(κ+ α)2

)(
1− (1 + ακ−1)−1

)−1
=
( 2κα+ α2

κ(κ+ α)2

)( α

κ+ α

)−1
=
κ+ (κ+ α)

κ(κ+ α)
=

1

κ+ α
+

1

κ
.

This implies the bound,

|||RHS of (27a)|||v ≤
2

κ
(1 + bv).
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The next inequality also uses the bound |||(κRκ)n|||v ≤ 1 + bv:

|||RHS of (27b)|||v ≤ (1 + bv)
1

κ

∞∑
n=0

(
(1 + ακ−1)−n − (1− ακ−1)n

)
= (1 + bv)

1

κ

(
[1− (1 + ακ−1)−1]−1 − [1− (1− ακ−1)]−1

)
=

1

κ
(1 + bv).

The final term (27c) is elementary:

|||RHS of (27c)|||v =
κ

(κ+ α)2
(1 + ακ−1) =

1

κ+ α
.

Substituting these three bounds completes the proof. �

3 Separability

In this section we develop consequences of the separability assumption. In particular, we
describe the construction of an approximating semigroup {Qt} with generator of the form
given in (11), as described in Theorem 1.2. This is accomplished in four steps:

(i) First we note that under (DV3) the resolvent kernel R of Φ can be truncated to a
compact set.

(ii) Then we argue that, again on a compact set, R can be approximated by a finite-rank
kernel T .

(iii) We next prove that the generator, Dκ := κ[−I + κRκ], of the jump process Φκ con-
structed in Section 2, can be approximated by a generator E of the form (11),

E = κ
[
−I + IC0 ⊗ ν1 +

N∑
i,j=1

rij ICi ⊗ νj
]
,

as long as κ > 0 is chosen sufficiently large. This key result is described in Proposi-
tion 3.2.

(iv) Finally we show that the transition semigroup {P t} of the original process Φ can
be approximated by the semigroup {P tκ} of the jump process Φκ (Proposition 3.7),
and that the semigroup {P tκ} can in turn be approximated by the semigroup {Qt}
corresponding to an HMM with a generator E as above (Proposition 3.8).

Again, the starting point of these results is justified by applying (DV3) to obtain the
truncation described in (i). A converse is obtained in the following result. The proof is based
on the resolvent equations, and is found in the Appendix.

Proposition 3.1. Suppose that the Markov process Φ satisfies conditions (A1) and (A2), and
that its resolvent kernel R is v-separable for some continuous function v : X → [1,∞) with
compact sublevel sets. Then (A4) holds for some continuous V−,W− on X, and the function
V− is in LV∞. �
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3.1 Truncations and finite approximations

Let Φ be a Markov process satisfying condition (A1), with generator D and associated resolvent
kernels {Rα}. Recall the definition of the corresponding jump process Φκ in the beginning of
Section 2, with generator Dκ and associated resolvents {Rκ,α}.

Our result here shows that condition (DV3) implies that the generator Dκ of the jump
process Φκ can be approximated by a generator E as in (11). This result is a corollary of
Proposition C.4, whose proof is given in the Appendix.

Proposition 3.2. Suppose the Markov process Φ satisfies conditions (A1), (A2). If (DV3)
holds as in assumption (A4), then, for each κ > 0 and any ε > 0, there exists a generator E of
the form given in (11), such that all the rij are strictly positive, and the generator Dκ of the
jump process Φκ can be approximated in operator norm as,

|||Dκ − E|||v ≤ ε, (28)

with v := eV . �

From Proposition 3.2 we have a generator E of the form (11), and with Qt := etE , t >
0, being the associated transition semigroup, the corresponding resolvent kernels {Tα} are
defined, as usual, in (13). Using the approximation of the generator E in (28), we next
show that the kernels {Tα} can be expressed as operator inverses, in a way analogous to the
representations obtained in Lemma 2.5 for the resolvents {Rκ,α}.

Lemma 3.3. Suppose that the assumptions of Proposition 3.2 hold, and choose κ > 0 and
ε0 > 0 such that |||Dκ −E|||v ≤ ε0. Then the resolvent obtained from the semigroup {Qt} can be
expressed as an inverse operator on Lv∞: For all α > (1 + bv)ε0,

Tα = [αI − E ]−1,

where bv is as in Proposition 2.1 (i). Moreover, for all such α we have the norm bound,

|||Tα|||v ≤
1 + bv

α− (1 + bv)ε0
. (29)

Proof. Note that we already have from the resolvent equation the formula [αI − E ]Tα = I on
Lv∞. It remains to show that [αI − E ] admits an inverse. We can write, on some domain,

[αI − E ]−1 = [αI −Dκ +Dκ − E ]−1 = Rκ, α[I + (Dκ − E)Rκ, α]−1.

The right-hand-side admits a power series representation whenever |||(Dκ − E)Rκ, α|||v < 1. In
fact, under the assumptions of the Lemma, using the bound in Lemma 2.5 we have,

|||(Dκ − E)Rκ, α|||v ≤ |||Dκ − E|||v · |||Rκ, α|||v ≤ ε0(1 + bv)/α < 1,

and the resulting bound is precisely (29). �
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Our next result shows that v-separability implies that each of the resolvent kernels Rα can
be approximated by the kernels {Tα} obtained from a finite-rank semigroup. Specifically, Rα
will be approximated by a resolvent Tα of the form (13), where the transition semigroup {Qt}
is that of a Markov process with generator E as in (11).

Proposition 3.4. Under the assumptions of Proposition 3.2, for each ε > 0 and δ ∈ (0, 1),
there exists a generator E of the form given in (11), such that the corresponding resolvent
kernels {Tα} defined in (13) satisfy the following uniform bound:

|||Rα − Tα|||v ≤ ε, δ ≤ α ≤ δ−1.

Proof. To establish the uniform bound in operator norm, first we approximate Rα by Rκ, α.
Under (DV3), Proposition 2.1 (i) implies that we can use Proposition 2.6 as follows: We fix
κ ≥ δ−1 such that the right-hand-side of this bound is no greater than 1

2ε, giving,

|||Rκ, α −Rα|||v ≤
1
2ε, α ≤ δ−1. (30)

We now invoke Proposition 3.2: Fix an operator E of the form (11) satisfying,

|||Dκ − E|||v ≤ ε0,

where ε0 ∈ (0, ε) is to be determined. Lemma 2.5 and Lemma 3.3 give,

Tα = [αI − E ]−1, Rκ, α = [αI −Dκ]−1.

Hence the difference can be expressed,

Tα −Rκ, α = Tα[E − Dκ]Rκ, α

= [Tα −Rκ, α][E − Dκ]Rκ, α +Rκ, α[E − Dκ]Rκ, α,

and applying the triangle inequality together with the sub-multiplicativity of the operator
norm,

|||Tα −Rκ, α|||v ≤ |||Tα −Rκ, α|||v|||E − Dκ|||v|||Rκ, α|||v + |||Rκ, α|||2v|||E − Dκ|||v.

Lemma 2.5 gives the bound |||αRκ, α|||v ≤ (1 + bv), and hence for α ∈ [δ, δ−1],

|||E − Dκ|||v|||Rκ, α|||v ≤ ε0(1 + bv)/δ.

Assuming that ε0 > 0 is chosen so that the right-hand-side is less than one, we can substitute
into the previous bound and rearrange terms to obtain,

|||Tα −Rκ, α|||v ≤
|||Rκ, α|||2v

1− |||E − Dκ|||v|||Rκ, α|||v
|||E − Dκ|||v ≤

( (1 + bv)
2

1− ε0(1 + bv)/δ

)(ε0
δ2

)
.

Choosing ε0 = 1
4(1 + bv)

−2εδ2 then gives,

|||Tα −Rκ, α|||v ≤
1
4ε

1

(1− 1
4ε)
≤ 1

2ε, α ∈ [δ, δ−1].

This combined with (30) and the triangle inequality completes the proof. �
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3.2 Ergodicity

To establish solidarity over an infinite time horizon we impose the reachability condition (A3)
throughout the remainder of this section. Recall the construction of the approximating HMM
process Ψ in Section 1.2, and the definition of v-uniform ergodicity from Section 2.1.

Proposition 3.5. Suppose the process Φ satisfies conditions (A1) – (A4), so that, in partic-
ular, Φ is v-uniformly ergodic with v = eV by Proposition 2.2. Then:

(i) For each κ > 1, the jump process Φκ is v-uniformly ergodic, with v = eV .

(ii) The HMM process Ψ is v-uniformly ergodic, with v = eV .

Before proceeding with the proof we prove Lyapunov bounds that are useful in later results.

Lemma 3.6. Under the assumptions of Proposition 3.5, there exist δ◦ > 0 and b◦ < ∞ such
that the following bound holds for each κ > 1:

Dκv ≤ −δ◦v + b◦. (31)

Consequently, the following bound holds for the semigroup,

|||P tκ|||v ≤ 1 + b◦/δ◦, t ≥ 0. (32)

Proof. The bound (32) follows from (31) using a version of the comparison theorem (see
eqn. (31) of [8]):

P tκv ≤ e−δ◦tv + b◦/δ◦.

The proof of (31) begins with the bound Dv ≤ [−δ + IC ]v, which holds under (DV3)
because W ≥ 1 everywhere. Letting b0v = bmaxC v then gives,

Dv ≤ −δv + b0vIC .

Applying Proposition 2.3 (ii) with h = v, f = δv and g ≡ b0vIC implies that,

κRκv + δRκv ≤ v +Rκg ≤ v + κ−1b0v.

On rearranging terms this gives,

κRκv ≤ (1 + δκ−1)−1(v + κ−1b0v),

and thence,

κRκv − v ≤ −
δ

δ + κ
v +

1

δ + κ
b0v.

From the definition of the generator for the jump process we conclude that the desired bound
holds,

Dκv = κ[κRκv − v] ≤ − δκ

δ + κ
v +

κ

δ + κ
b0v.

This gives (31) on choosing the worst-case over κ ≥ 1:

δ◦ = δ/(δ + 1), b◦ = b0v.

�
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Proof of Proposition 3.5. To establish (i) we first demonstrate that Φκ is irreducible and aperi-
odic. If ψ is a maximal irreducibility measure for Φ, then Lemma 2.5 implies that ψ ≺ Rκ(x, · )
for each x. This implies that the chain with transition kernel κRκ is ψ-irreducible and ape-
riodic. Irreducibility and aperiodicity for Φκ is then obvious since it is a jump process with
Poisson jumps, and jump distribution κRκ.

To complete the proof of (i) we establish condition (V4) of [8]. From Lemma 3.6 we obtain,

Dκv ≤ −1
2δ◦v + b◦IC◦ ,

where C◦ = {x : 1
2δ◦v(x) ≤ b◦}. The sublevel set C◦ is compact, and Proposition 2.2 implies

that compact sets are small, so this implies that the jump process is v-uniformly ergodic.
Analogous arguments for Ψ will establish (ii): ψ-irreducibility and aperiodicity are imme-

diate by Proposition 1.4 and the fact that all rij in the definition of E are strictly positive, from
Proposition 3.2. To show that Ψ is v-uniformly ergodic simply note that, by the definition of
E ,

Ev = −κv + κTv ≤ −κv + κbIY,

where b := supb∈Y v(x). Again, this is a version of condition (V4) of [8], and the conclusion
follows from [8]. �

3.3 Semigroup approximations

We begin with an approximation bound between the semigroups corresponding to Φ and Φκ.

Proposition 3.7. Suppose that Φ satisfies conditions (A1) – (A4). Then there exists b•
depending only on Φ such that,

‖P tg − P tκg‖v ≤ b•κ−1‖D2g‖v, t ≥ 0, κ ≥ 1,

for any C4 function g with compact support.

Proof. Under the assumption of the proposition, the local-martingale assumption can be
strengthened to the martingale property (8). That is, for any T > 0,

Ex
[
g(Φ(T ))

]
= g(x) + Ex

[∫ T

0
Dg(Φ(t)) dt

]
Ex
[
Dg(Φ(T ))

]
= Dg(x) + Ex

[∫ T

0
D2g(Φ(t)) dt

]
, x ∈ X.

It follows that P T g is differentiable in T , and the same is true for P Tκ g.
Denote the difference εg(t) = P tg − P tκg. We have for any t,

d

dt
εg(t) = P tDg − P tκDκg

= Dκ[P tg − P tκg] + P t[D −Dκ]g

= Dκ[P tg − P tκg]− κ−1P t[DDκg],
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where in the second equation we have used here the fact that the operators P t, P tκ, and Dκ
all commute. The final equation follows from (24) and the definition of Dκ in (17). Writing
h = DDκg, this can be solved to give,

εg(t) = εg(0)− κ−1
∫ t

0
esDκP t−sh ds.

Substituting P sκ = esDκ and εg(0) = 0 simplifies this expression:

εg(t) = −κ−1
∫ t

0
P sκP

t−sh ds. (33)

We have π(h) = π(P t−sh) = 0, so that by Proposition 2.2 we have for some B0 < ∞ and
β0 > 0,

‖P t−sh‖v ≤ eB0−β0(t−s)‖h‖v, 0 ≤ s ≤ t

Consequently, for each x ∈ X and t ≥ 0,∣∣∣∫ t

0
P sκP

t−sh (x) ds
∣∣∣ ≤ ‖h‖veB0

∫ t

0
e−β0(t−s)P sκv (x) ds

Recalling the bound (32) on |||P sκ|||v and substituting into (33) gives ‖εg(t)‖v ≤ κ−1β−10 ‖h‖veB0 .
We have h = DDκg, and hence the generator relationship (24) and the generator bound in
Proposition 2.1 (ii) give,

‖h‖v ≤ |||κRκ|||v‖D
2g‖v ≤ (1 + bv)‖D2g‖v.

Finally, substituting this into the previous bound on ‖εg(t)‖v completes the proof. �

Similar arguments provide approximation bounds for the semigroups corresponding to Φκ

and Ψ, where the latter is denoted {Qt} and defined in (12).

Proposition 3.8. Suppose that Φ satisfies conditions (A1)–(A4). Then there exists b• de-
pending only on Φ such that for g ∈ Lv∞,

‖P tκg −Qtg‖v ≤ b•ε‖g‖v.

Proof. The proof is similar to the proof of Proposition 3.7: We fix g ∈ Lv∞, and denote the
error by,

εg(t) = P tκg −Qtg, t ≥ 0.

The right hand side is differentiable by construction of the two semi-groups, with

d

dt
εg(t) = Dκεg(t) + [Dκ − E ]Qtg

This can be solved to give,

εg(t) = εg(0) +

∫ t

0
P sκ [Dκ − E ]Qt−sg ds.
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We have εg(0) = 0. Moreover, [Dκ − E ]1 ≡ 0, which implies that [Dκ − E ]g = [Dκ − E ][g −
$(g)]. Here, $ denotes the unique invariant measure of the process Ψ, guaranteed to exist by
Proposition 3.5. Hence,

‖εg(t)‖v ≤ |||Dκ − E|||v
∫ t

0
|||P sκ|||v‖(Q

t−s − 1⊗$)g‖v ds.

Substituting the bound |||P sκ|||v ≤ 1 + b◦/δ◦ from Lemma 3.6 gives,

‖εg(t)‖v ≤ |||Dκ − E|||v(1 + b◦/δ◦)‖g‖v
∫ t

0
|||Qt−s − 1⊗$|||v ds ,

and Proposition 3.2 gives |||Dκ − E|||v ≤ ε. This establishes the result with

b• = (1 + b◦/δ◦)

∫ ∞
0
|||Qr − 1⊗$|||v dr ,

which is finite, by Proposition 3.5. �

The following bound is an immediate consequence of the last Proposition.

Corollary 3.9. Under the assumptions of Proposition 3.8, for each ε > 0 we can construct
the approximating process Ψ described in Section 1.2 so that the the Markov processes Φ and
Ψ have unique invariant probability measures π and $, respectively, satisfying,

‖π −$‖v ≤ ε.

�
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Appendix

A Appendix: Proof of Proposition 2.1

The drift condition (DV3) can be expressed as follows, in terms of the function v = eV :

Dv ≤ (−δW + bIC)v.

By assumption, we have δW (x) ≥ δ everywhere. Moreover, δW (x) ≥ 1 on the complement
of the sublevel set CW (δ−1) (see (10)). This set is compact under (A4), so that the desired
bound holds with,

bv := b
(

sup
x∈C

v(x)
)

+ (1−min(δ, 1))
(

sup
x∈CF (r)

v(x)
)
<∞ .

This establishes part (i).

Under (18) we can apply Proposition 2.3 (ii) with h = v, f = v and g ≡ bv to obtain
αRαv +Rαv ≤ v + α−1bv, or

αRαv ≤ (1 + α−1)−1
(
v + α−1bv

)
. (34)

Iterating this bound we obtain, for any n ≥ 1,

(αRα)nv ≤ (1 + α−1)−nv + α−1bv

n∑
k=1

(1 + α−1)−k

≤ v + α−1bv[1− (1 + α−1)]−1 = v + bv.

Hence (αRα)nv ≤ (1 + bv)v, which is the first bound.
The second follows from (34) and the (discrete-time) comparison theorem of [22], which

gives,
π(v) <∞ and π(v) ≤ (1 + α−1)−1

(
π(v) + α−1bv

)
.

Rearranging terms gives (1 + α−1)π(v) ≤ π(v) + α−1bv, or π(v) ≤ bv as claimed. �

B Appendix: Proof of Proposition 3.1

The following strengthening of the strong Feller property is required:

Lemma B.1. Suppose that the kernel T has the strong Feller property and is also v-separable
for some continuous function v : X → [1,∞). Then Tf is a continuous function for each
f ∈ Lv∞.

Proof. Let {χn : n ≥ 0} denote a sequence of non-decreasing continuous functions satisfying
0 ≤ χn(x) ≤ 1 for each x. Assume that each function has compact support, and for each x,

lim
n→∞

χn(x) = 1
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Letting Iχn denote the associated multiplication operator, denote Tn = IχnT Iχn . Under v-
separability it follows that limn→∞ |||T − Tn|||v = 0.

Under the strong Feller property for T it follows that Tnf is continuous for each n, and
that Tnf → Tf uniformly on compact sets as n → ∞, for any f ∈ Lv∞. Continuity of Tf
follows. �

Under the separability assumption we can find, for each n ≥ 1, a compact set Yn and a
kernel Tn supported on Yn satisfying |||R− Tn|||v ≤ 2−n. We assume without loss of generality
that Yn ⊆ Yn+1 for each n, and that

⋃
n Yn = X.

Writing vn = vIYcn we have |||vn|||v = 1 and Tnvn ≡ 0. Consequently, for each n ≥ 1,

Rvn = (R− Tn)vn + Tnvn = (R− Tn)vn ≤ |||R− Tn|||vv ≤ 2−nv, n ≥ 1. (35)

The desired solution to (DV3) is constructed as follows. First define the sequence of finite-
valued functions on X,

um− := v +
m∑
n=1

vn =
(

1 +
m∑
n=1

IYcn
)
v, vm− = Rum− , m ≥ 1,

and denote u− = limm→∞ u
m
− , v− = limm→∞ v

m
− . Applying (35), we conclude that v− ∈ Lv∞,

with the explicit bound,

‖v−‖v ≤ |||R|||v +

∞∑
n=1

‖Rvn‖v ≤ |||R|||v + 1.

Each of the functions vm− is continuous since R has the strong Feller property, and the assump-
tions of Lemma B.1 hold with R = T . These functions converge to v− uniformly on compact
subsets of X, showing that v− is continuous. We let V− = log(v−), which is also continuous.

It follows from Proposition 2.4 that the resolvent equation holds, Dv− = v− − u−, and
consequently, recalling the nonlinear generator (9),

H(V−) = (v−)−1Dv− = 1− u−/v−.

By construction, the function u−/v− has compact sublevel sets. Writing W = max(u−/v− −
1, 1) and C = {x : W (x) ≤ 1} then gives,

H(V−) ≤ −W + 2IC ,

which is a version of (DV3). The function W is not continuous. However, it has compact
sublevel sets, so there exists a continuous function W− : X → [1,∞) with compact sublevel
sets, satisfying W− ≤W everywhere. The pair (V−,W−) is the desired solution to (DV3). �

C Proof of Proposition 3.2

Before giving the proof, we state and prove some preliminary results. The assumptions of
Proposition 3.2 remain in effect throughout this subsection.

On setting h = v = eV , f = δWh, and g = bICh in Proposition 2.3 we obtain the following
bound:



Approximating a Diffusion by a Finite-State HMM 23

Lemma C.1. Under (DV3), with v = eV , we have,

RIW1v ≤ v + bs0,

where W1 = 1 + δW , s0 = RICv and for any function F , IF denotes the multiplication kernel
IF (x, dy) = F (x)δx(dy).

For each r ≥ 1, we define the compact sets,

Cr = Cv(r) ∩ CW (r),

in the notation of equation (10). From the assumption that V and W are continuous with
compact sublevel sets, we obtain,

lim
r→∞

inf
x∈Ccr

V (x) = lim
r→∞

inf
x∈Ccr

W (x) =∞. (36)

The above bounds on the resolvent will allow us to approximate R by a kernel supported on Cr
for suitably large r ≥ 1. To that end, we choose and fix a continuous function W0 : X→ [1,∞)
in LW∞ , satisfying ‖W 2

0 ‖W = 1, and whose growth at infinity is strictly slower than W
1
2 in the

sense that,
lim
r→∞

‖W 2
0 ICW (r)c‖W = 0 . (37)

This can be equivalently expressed,

lim
r→∞

sup
x∈X

[ W0(x)√
W (x)

I{W (x)>r}

]
= 0 .

The weighting function is simultaneously increased to,

v0 = W0v.

The following Lemma justifies truncating R to a compact set.

Lemma C.2. Under (DV3) the resolvent kernel R satisfies |||RIW |||v <∞, and,

lim
r→∞

|||IW0(R− ICrRICr)IW0|||v0 = 0. (38)

Proof. Lemma C.1 implies that |||RIW |||v is finite as claimed: We have the explicit bound
|||RIW |||v ≤ δ−1(1 + b‖s0‖v). The limit (38) is also based on the same lemma. Starting with the
identity R− ICrRICr = ICrRICcr + ICcrR we obtain,

IW0(R− ICrRICr)IW0v0 = IW0(R− ICrRICr)IW 2
0
v

= IW0 [ICrRICcrIW 2
0
]v + IW0 [ICcrRIW0 ]v0.

(39)

These two terms can be bounded separately. For the first term on the right-hand-side consider
the following,

[ICrRICcrIW 2
0
]v ≤ |||ICrRICcrIW |||vεrv ≤ |||RIW |||vεrv,
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where εr := supx∈Ccr W0(x)W−
1
2 (x). Multiplying both sides by W0 then gives,

[IW0ICrRICcrIW0 ]v0 ≤ |||RIW |||vεrv0, r ≥ 1,

which means that |||IW0ICrRICcrIW0|||v0 ≤ |||RIW |||vεr for each r.
Bounds on the second term in (39) are obtained similarly through a second truncation.

Write, for any n ≥ 1,

[ICcrRIW 2
0
]v = [ICcrRIW 2

0
ICn ]v + [ICcrRIW 2

0
ICcn ]v.

Arguing as above we have |||ICcrRIW 2
0
ICcn|||v ≤ |||RIW |||vεn. Moreover, W 2

0 v ≤ Wv ≤ n2 on Cn,
which gives,

[ICcrRIW 2
0
]v ≤ n2ICcr + |||RIW |||vεnv.

Multiplying both sides of this equation by W0 gives,

[IW0ICcrRIW0 ]v0 ≤ n2ICcrW0 + |||RIW |||vεnv0,

so that
|||IW0ICcrRIW0|||v0 ≤ n

2|||ICcrW0|||v0 + |||RIW |||vεn. (40)

And also,

|||ICcrW0|||v0 = sup
x∈Ccr

W0(x)

v0(x)
= sup

x∈Ccr

1

v(x)
≤ 1

r
.

This combined with (36) implies that (40) can be made arbitrarily small by choosing large n
and then large r. �

Lemma C.3. Under (A1) and (A2), for each r ≥ 1 and ε > 0, there exists t0 > 0 and t1 <∞
in the definition (3) such that,

|||IW0ICr(R−R)ICrIW0|||v0 ≤ ε,

where R = R1.

Proof. Since W0 and v0 are bounded on Cr, we can apply the bound,

|||IW0ICr(R−R)ICrIW0|||v0 ≤
(

sup
x∈Cr

W0(x)2v0(x)
)
|||ICr(R−R)ICr|||1

Hence it is sufficient to prove the result with W0 = v0 = 1.
We have by definition of R,

|||ICr(R−R)ICr|||1 = sup
x∈Cr

∫
t∈[t0,t1]c

e−tP t(x,Cr) dt.

The right hand side is bounded by t0 + e−t1 , which can be made arbitrarily small by choice of
t0 > 0 and t1 <∞. �
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Proposition 3.2 will be seen as a corollary to the following more general bound:

Proposition C.4. For any ε > 0 there exists a finite-rank kernel T satisfying:

|||IW0 [R− T ]IW0|||v0 ≤ ε.

The kernel can be taken of the form,

T =
∑
ij

rijICi ⊗ νj (41)

where {Ci : 1 ≤ i ≤ N} is a finite collection of disjoint, open, precompact sets, {rij} are
non-negative constants, and {νi} are probability measures on (X,B) with each νi supported on
Ci.

Proof. Lemma C.2 and Lemma C.3 imply that for any ε > 0 we can find r0 ≥ 1 such that,

|||IW0(R− ICr0RICr0 )IW0|||v0 ≤ ε/2.

With this value of r0 fixed, note that (A2) implies that for any ε0 > 0 we can construct a
kernel T (x, dy) = t(x, y)dy of the form given in (16) such that |t(x, y) − ξ(x, y)| ≤ ε0 for
(x, y) ∈ Cr0 × Cr0 (see definition of ξ above Proposition 1.1). In particular, the functions
{si} and the densities of the νi can be taken as indicator functions, so that this is simply the
approximation of the continuous function ξ( · , · ) by simple functions. Consequently,

|||IW0 [R− T ]IW0|||v0 ≤ ε/2 + |||IW0ICr0 [R− T ]ICr0 IW0|||v0
≤ ε/2 + ε0 sup

x∈Cr0
W0(x) sup

x∈Cr0

(
v(x)W 2

0 (x)
)
µLeb(Cr0)

≤ ε/2 + ε0r
4
0 µ

Leb(Cr0),

where µLeb(Cr0) denotes the Lebesgue measure of the bounded set Cr0 . The right-hand-side is
bounded by ε on choosing ε0 = [r40 µ

Leb(Cr0)]−1(ε/2). �

Proof of Proposition 3.2. Since Proposition C.4 was proved for an arbitrary function W0

satisfying (37), we can take W0 equal to a constant, say w ≥ 1. First consider the case κ = 1.
There, applying Proposition C.4 with ε/2 instead of ε, we obtain a finite-rank kernel of the
form (41). Letting E0 = κ[−I + T ],

|||Dκ − E0|||v = |||κ[κRκ − T ]|||v = |||R− T |||v =
1

w
|||IW0 [R− T ]IW0|||v0 ≤ ε/2.

Now we define E = E0 + IC0 ⊗ ν1, with C0 = X \ ∪1≤i≤NCi and ν1 a probability measure
supported on C1. We have E1 ≡ 0 as required, and the following bound holds:

|||Dκ − E|||v ≤ |||Dκ − E0|||v + ν1(v)
(

sup
x∈C0

1

v(x)

)
.

Recall that Cc0 =
⋃
i≥1Ci. If the {Ci : i ≥ 1} are constructed so that Cc0 ⊂ Cv(r), then the

right hand side is bounded by ν1(v)r−1. For r > 0 sufficiently large, this is less than ε, as
required.

For a fixed, general κ we consider the scaled process {Z(t) := Φ(t/κ) : t ≥ 0} and note it
satisfies exactly the same assumptions as {Φ(t)}. Also, κRκ, is the resolvent kernel for {Z(t)}
(corresponding to the parameter α = 1) so that, as before by Proposition C.4, we obtain the
required bound. �



Approximating a Diffusion by a Finite-State HMM 26

References

[1] S. Balaji and S.P. Meyn. Multiplicative ergodicity and large deviations for an irreducible
Markov chain. Stochastic Process. Appl., 90(1):123–144, 2000.
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